# The conditions $\operatorname{Int}(R) \subseteq R_{S}[X]$ and $\operatorname{Int}\left(R_{S}\right)=\operatorname{Int}(R)_{S}$ for integer-valued polynomials 

David E. Rush<br>Department of Mathematics, University of California, Riverside, CA 92521, USA

Communicated by M.-F. Roy; received 20 July 1995; revised 19 March 1996


#### Abstract

Let $R$ be an integral domain with quotient field $K$ and let $\operatorname{Int}(R)=\{f \in K[X] \mid f(R) \subseteq R\}$. In this note we determine when $\operatorname{Int}(R)=R[X]$ for an arbitrary integral domain $R$. More generally we determine when $\operatorname{Int}(R) \subseteq R_{S}[X]$ for a multiplicative subset $S$ of $R$. In the case that $R$ is an almost Dedekind domain with finite residue fields we also determine when $\operatorname{Int}\left(R_{S}\right)=\operatorname{Int}(R)_{S}$ for each multiplicative subset $S$ of $R$, and show that if this holds then finitely generated ideals of $\operatorname{Int}(R)$ can be generated by two elements. (C) 1998 Elsevier Science B.V.


AMS classification: 13F20; 13F05; 13B24

## 0. Introduction

Let $R$ be an integral domain with quotient field $K$ and let $\operatorname{Int}(R)$ be the ring of integer-valued polynomials on $R$. Thus, $\operatorname{Int}(R)=\{f \in K[X] \mid f(R) \subseteq R\}$. The ring $\operatorname{Int}(R)$ has been much studied since it was considered in the 1919 articles of Ostrowski [19] and Polya [20] for the case that $R$ is the ring of integers in an algebraic number field. Among the first questions which arise in studying $\operatorname{Int}(R)$ is to determine when $\operatorname{Int}(R)=R[X]$. This question was considered [5], and was answered for $R$ Noetherian in [22]. This result for the Noetherian case was later used for example in [11] and in [12]. In this note we determine when $\operatorname{Int}(R)=R[X]$ for an arbitrary integral domain $R$. More generally, we determine when $\operatorname{Int}(R) \subseteq R_{S}[X]$ for a multiplicative subset $S$ of $R$. We also determine when $\operatorname{Int}\left(R_{S}\right)=\operatorname{Int}(R)_{S}$ for each multiplicative subset $S$ of $R$ in the case that $R$ is an almost Dedekind domain with finite residue fields. It turns out that these properties put rather strong finiteness conditions on $R$, and focus attention on a special class of almost Dedekind domains which was defined in [17]. We also show that if $R$ is an almost Dedekind domain with finite residue fields and $\operatorname{Int}\left(R_{S}\right)=\operatorname{Int}(R)_{S}$
for each multiplicative subset $S$ of $R$, then finitely generated ideals of $\operatorname{Int}(R)$ can be generated by two elements, as in the case that $R$ is Dedekind with finite residue fields.

A question of Brizolis [4, p. 1075] that has been considered by several authors is to determine when $\operatorname{Int}(R)$ is a Prüfer domain. In the case of a Noetherian ring $R$ it is known that $\operatorname{Int}\left(R_{S}\right)=\operatorname{Int}(R)_{S}$ for each multiplicative subset $S$ of $R$ [5], and thus for $R$ Noetherian this question reduces to the case that $R$ is local. Using this and results in [6] on the case that $R$ is a Noetherian valuation ring, it was shown by Chabert [7, Corollaire 6.5] and McQuillan [18] that if $R$ is Noetherian, $\operatorname{Int}(R)$ is Prüfer if and only if $R$ is a Dedekind domain with finite residue fields. In [7] Chabert also observed that if $R$ is a domain such that $\operatorname{Int}(R)$ is Prüfer, then $R$ is almost Dedekind with finite residue fields. Recall that a domain $R$ is an almost Dedekind domain if $R_{P}$ is a Noetherian valuation ring for each maximal ideal $P$ of $R$ [9, Section 36].

In exploring the above question of Brizolis, various authors have constructed examples of almost Dedekind domains $R$ with finite residue fields for which $\operatorname{Int}(R)$ is Prüfer, and examples of such almost Dedekind domains for which $\operatorname{Int}(R)$ is not Prüfer. For example, see $[8,10,16,17]$. In the examples in [10] where $\operatorname{Int}(R)$ is not Prüfer, the technique used for showing this is to show that $\operatorname{Int}(R) \subseteq R_{P}[X]$ for some maximal ideal $P$ of $R$. Indeed condition (1) $\operatorname{lnt}(R) \nsubseteq R_{P}[X]$ for each maximal ideal $P$ of $R$, is easily seen to be necessary for $\operatorname{Int}(R)$ to be Prüfer. This brings up the question of characterizing condition (1). This is done in section one of this note. On the other hand, condition (2) $\operatorname{Int}\left(R_{P}\right)=\operatorname{Int}(R)_{R-P}$ for each maximal ideal $P$ of $R$, on an almost Dedekind domain $R$ with finite residue fields is obviously sufficient for $\operatorname{lnt}(R)$ to be Prüfer. This condition is characterized in Section 2. An example in [8] shows that (1) $\nRightarrow(2)$ for a general almost Dedekind domain with finite residue fields. In Section 3 we relate the almost Dedekind domains which satisfy (2) to the so-called glad domains defined in [17], and give some results on these classes of almost Dedekind domains. In Section 4 we show that the property that finitely generated ideals of $\operatorname{Int}(R)$ are generated by two elements, and some related properties, extend from the case that $R$ is a Dedekind domain with finite residue fields, to the more gencral case that $R$ satisfies (2).

## 1. When $\operatorname{Int}(R) \subseteq R_{S}[X]$

In this section we determine when $\operatorname{Int}(R) \subseteq R_{S}[X]$ for an integral domain $R$ and a multiplicative subset $S$ of $R$. By a valuation ring, we mean a ring, possibly with zero-divisors, in which the set of ideals is totally ordered under inclusion. If $R$ is a ring define $d_{n}(X)=d_{n}\left(X_{0}, X_{1}, \ldots, X_{n}\right) \in R\left[X_{0}, X_{1}, \ldots, X_{n}\right]$ by

$$
d_{n}(X)=\prod_{0 \leq i<j \leq n}\left(X_{j}-X_{i}\right)
$$

We can consider $d_{n}$ as a function $R^{n+1} \rightarrow R$ in the usual way. If $x \in R$ is nilpotent we define the nilpotence degree of $x$ as the greatest integer $n$ such that $x^{n} \neq 0$, and denote
it $n d(x)$. If $s \in R$ and $I$ is an ideal of $R$ let $D(s)$ denote $\{P \in \operatorname{Spec}(R) \mid s \notin P\}$ and $V(I)=\{P \in \operatorname{Spec}(R) \mid I \subseteq P\}$. We denote the non-negative integers by $\mathbb{Z}_{+}$, and the cardinality of a set $A$ by $|A|$. If $f \in B[X]$ for some ring $B$ containing $R$ as a subring, we denote the $R$-submodule of $B$ generated by the coefficients of $f$ by $c_{R}(f)$, or by $c(f)$ if the reference to $R$ is clear. The following lemma shows the relevance of the polynomials $d_{n}(X)$.

Lemma 1.1. Let $R$ be an integral domain with quotient field $K$. If $f=g / a \in \operatorname{lnt}(R)$, $g \in R[X], a \in R$, then $d_{n}\left(R^{n+1}\right) \subseteq\left(a R:_{R} c(g)\right)$.

Proof. Write $g=a_{n} X^{n}+a_{n-1} X^{n-1}+\cdots+a_{0} \in R[X], a_{i} \in R$. Let $x_{0}, x_{1}, \ldots, x_{n} \in R$ and let

$$
A=\left(\begin{array}{cccc}
1 & x_{0} & \cdots & x_{0}^{n} \\
1 & x_{1} & \cdots & x_{1}^{n} \\
\vdots & & & \vdots \\
1 & x_{n} & \cdots & x_{n}^{n}
\end{array}\right), \quad B=\left(\begin{array}{c}
a_{0} \\
a_{1} \\
\vdots \\
a_{n}
\end{array}\right), \quad C=\left(\begin{array}{c}
g\left(x_{0}\right) \\
g\left(x_{1}\right) \\
\vdots \\
g\left(x_{n}\right)
\end{array}\right) .
$$

Since the entries of $C$ are in $a R$ by hypothesis, then multiplying both sides of the equation $A B=C$ by the adjoint of $A$ we see that $d a_{i} \in a R$ for each $i$, with $d=$ $d_{n}\left(x_{0}, \ldots, x_{n}\right)=\prod_{0 \leq i<j \leq n}\left(x_{j}-x_{i}\right)$. Thus, we have $d_{n}\left(R^{n+1}\right) \subseteq\left(a R:_{R} c(y)\right)$.

If $I$ is an ideal of $R$ and $A=R / I$, then it is clear that $d_{n}\left(R^{n+1}\right) \subseteq I$ if and only if $d_{n}\left(A^{n+1}\right)=\{0\}$. In the next few lemmas we give some consequences of $d_{n}\left(R^{n+1}\right)=$ $\{0\}$. Recall that a ring $R$ is arithmetical if $R_{P}$ is a valuation ring for each maximal ideal $P$ of $R$.

Lemma 1.2. Let $R$ be a ring. If $d_{n}\left(R^{n+1}\right)=0$ for a positive integer $n$ then the following hold:
(a) The set $\{|R / P| \mid P \in \operatorname{Spec}(R)\}$ is bounded.
(b) The set $\{n d(x) \mid x \in \operatorname{nil}(R)\}$ is bounded.

If $R$ is arithmetical (b) can be strengthened to
(c) $J^{k}=0$ for some $k$ where $J$ is the Jacobson radical of $R$.

Proof. For the proof of (a) we claim that $n \geq|R / P|$ for each $P \in \operatorname{Spec}(R)$. Indeed if some $x_{0}, x_{1}, \ldots, x_{n} \in R$ have distinct images in $R / P$ for some $P \in \operatorname{Spec}(R)$, then we have $\prod_{0 \leq i<j \leq n}\left(x_{j}-x_{i}\right)=d_{n}\left(x_{0}, \ldots, x_{n}\right) \notin P$, a contradiction.

For the proof of (b) let $x \in \operatorname{nil}(R)$. Since $d_{n}\left(1, x, x^{2}, \ldots, x^{n}\right)=0$, then writing each factor $\left(x^{j}-x^{i}\right)$ of $d_{n}\left(1, x, x^{2}, \ldots, x^{n}\right)$ as $x^{i}\left(x^{j-i}-1\right)$ and observing that $\left(x^{j-i}-1\right)$ is a unit in $R$, we see that for some $t>0, x^{t}=0$ for all $x \in \operatorname{nil}(R)$.

To show that (b) $\Rightarrow$ (c) if $R$ is arithmetical let $t$ be such that $x^{t}=0$ for all $x \in$ $\operatorname{rad}(R)$. It suffices to show that $x_{1} x_{2} \cdots x_{t}=0$ for $x_{1}, x_{2}, \cdots, x_{t} \in \operatorname{rad}(R)$. For this it suffices to show $x_{1} x_{2} \cdots x_{t}=0$ in $R_{P}$ for each prime ideal $P$ of $R$. But the result is clear in this case since $R_{P}$ is a valuation ring, and hence ( $x_{1}, x_{2}, \ldots, x_{t}$ ) $R_{P}$ is principal.

Corollary 1.3. If $R$ is a ring with Jacobson radical J, the conditions (a) and (c) of Lemma 1.2 imply:
(d) The group of units $R^{*}$ of $R$ has finite exponent.

Proof. It follows from condition (a) that $(R / J)^{*}$ has finite exponent. Suppose we have shown that $\left(R / J^{i-1}\right)^{*}$ has finite exponent. We have the exact sequence

$$
0 \rightarrow 1+\left(J^{i-1} / J^{i}\right) \rightarrow\left(R / J^{i}\right)^{*} \rightarrow\left(R / J^{i-1}\right)^{*}
$$

Also, the multiplicative group $1+J^{i-1} / J^{i}$ is isomorphic to the additive group $J^{i-1} / J^{i}$, since $(1+x)(1+y)=1+x+y$ for $x, y \in J^{i-1} / J^{i}$. It follows from conditions (a) and (c) that $k J^{i-1} \subseteq k R=0$ for some positive integer $k$, and thus $1+J^{i-1} / J^{i}$ has finite exponent. Therefore $\left(R / J^{i}\right)^{*}$ does also.

Before giving our main result on when $\operatorname{Int}(R) \subseteq R_{S}[X]$ for a multiplicative subset $S$ of $R$, we remind the reader that a difficulty with $\operatorname{Int}(R)$ in general is that $\operatorname{Int}\left(R_{S}\right)=$ $\operatorname{Int}(R)_{S}$ can fail for a multiplicative subset $S$ of $R$. On the positive side there is the following result of P.-J. Cahen and J.-L. Chabert.

Proposition 1.4 (Cahen and Chabert [5, p. 303, Corollaries 4, 5]). If $S$ is a multiplicative subset of $R$ then
(1) $\operatorname{Int}(R)_{S} \subseteq \operatorname{Int}\left(R_{S}\right)$.
(2) If $R$ is Noetherian, then $\operatorname{Int}(R)_{S}=\operatorname{Int}\left(R_{S}\right)$.

Proof. We give an alternate proof for (1) that is shorter than the one in [5]. For this it suffices to show that $\operatorname{Int}(R) \subseteq \operatorname{Int}\left(R_{S}\right)$. Let $f \in \operatorname{Int}(R)$ have degree $n$ and assume $\operatorname{Int}\left(R_{S}\right)$ contains the members of $\ln t(R)$ of degree $<n$. Let $r / s \in R_{S}, r \in R, s \in S$ and consider $s^{n} f(X)=\left(s^{n} f(X)-f(s X)\right)+f(s X)$. Since $s^{n} f(X)-f(s X)=g_{s}(X) \in \operatorname{Int}(R)$ and has degree $<n, g_{s}(X) \in \operatorname{Int}\left(R_{S}\right)$. Then $s^{n}\left(f\left(\frac{r}{s}\right)\right)=g_{s}\left(\frac{r}{s}\right)+f\left(s\left(\frac{r}{s}\right)\right) \in R_{S}$, and hence $f\left(\frac{r}{s}\right) \in R_{S}$.

A short and simple proof of (2) is given in [22, Proposition 4].
Theorem 1.5. Let $R$ be an integral domain with quotient field $K$ and let $S$ be a multiplicative subset of $R$. The following are equivalent:
(1) $\operatorname{Int}(R) \nsubseteq R_{S}[X]$.
(2) There exists a positive integer $n$, and elements $a, b \in R$ such that $\left(a R:_{R} b\right) R_{S} \neq$ $R_{S}$ and $d_{n}\left(R^{n+1}\right) \subseteq\left(a R:_{R} b\right)$.
(3) There exist $a, b \in R$ with $\left(a R:_{R} b\right) R_{S} \neq R_{S}$ such that the two sets $\{|R / P| \mid P \in$ $\left.V\left(a R:_{R} b\right)\right\}$ and $\left\{n d(x) \mid x \in \operatorname{nil}\left(R /\left(a R:_{R} b\right)\right)\right\}$ are finite.

Proof. (1) $\Rightarrow$ (2) Let $f$ be an element of $\operatorname{Int}(R)-R_{S}[X]$ of minimal degree. Write $f=g / a$, with $g=a_{n} X^{n}+a_{n-1} X^{n-1}+\cdots+a_{0} \in R[X], a, a_{i} \in R$. Then $a_{n} \notin a R_{S}$.

Indeed if $a_{n}=r a / s$ for some $r \in R, s \in S$, we would have $s f=\operatorname{sg} / a \in \operatorname{Int}(R)-R_{S}[X]$, and hence $\left(s a_{n-1} X^{n-1}+s a_{n-2} X^{n-2}+\cdots+s a_{0}\right) / a \in \operatorname{Int}(R)-R_{S}[X]$. By Lemma 1.1 we have $d_{n}\left(R^{n+1}\right) \subseteq\left(a R:_{R} a_{n}\right)$.
(2) $\Rightarrow$ (3) This follows from Lemma 1.2.
(3) $\Rightarrow$ (1) Let $\left\{q_{1}, \ldots, q_{n}\right\}=\left\{|R / P| \mid\left(a R:_{R} b\right) \subseteq P\right\}$. The monic polynomial $f(X)=$ $\prod_{i=1}^{n}\left(X^{q_{i}}-X\right)$ satisfies $f(R) \subseteq \operatorname{rad}\left(a R:_{R} b\right)$, and $g(X)=f(X)^{j}$ satisfies $g(R) \subseteq\left(a R:_{R}\right.$ $b$ ) for some $j$. Then we have $b g(X) / a \in \operatorname{Int}(R)$, and since the leading coefficient of $b g(X)$, which is $b$, is not contained in $a R_{S}, b g(X) / a \notin R_{S}[X]$.

Corollary 1.6. If $R$ is a Prüfer domain and $S$ a multiplicative subset of $R$, the conditions in Theorem 1.5 are equivalent to:
(4) There exists $a, b \in R$ with $\left(a R:_{R} b\right) R_{S} \neq R_{S}$ such that the set $\{|R / P| \mid P \in$ $\left.V\left(a R:_{R} b\right)\right\}$ is finite and $\left(a R:_{R} b\right)$ contains a power of its radical.

Proof. This follows from Lemma 1.2.

Corollary 1.7. Let $R$ be an integral domain with quotient field $K$. The following are equivalent:
(1) $\operatorname{Int}(R) \neq R[X]$.
(2) There exists a positive integer $n$, and elements $a, b \in R$ such that $b \notin a R$ and $d_{n}\left(R^{n+1}\right) \subseteq\left(a R:_{R} b\right)$.
(3) There exist $a, b \in R$ with $b \notin a R$ such that the two sets $\left\{|R / P| \mid P \in V\left(a R:_{R} b\right)\right\}$ and $\left\{n d(x) \mid x \in \operatorname{nil}\left(R /\left(a R:_{R} b\right)\right\}\right.$ are bounded.

Proof. Take $S=\{1\}$ in the above theorem.
Corollary 1.8 (Shibata et al. [22, Theorem 2]). If $R$ is a Noetherian domain, $\operatorname{Int}(R) \neq$ $R[X]$ if and only if for some prime $P$ of the form $P=\left(a R:_{R} b\right)$, the field $R / P$ is finite.

Proof. If $\operatorname{Int}(R) \neq R[X]$ then $\operatorname{Int}(R) \nsubseteq R_{P}[X]$ for some maximal ideal $P$ of $R$. Then by Theorem 1.5 there exist $a, b \in R$ with $\left(a R:_{R} b\right) R_{P} \neq R_{P}$ such that the two sets $\left\{\mid R / Q \| Q \in V\left(a R:_{R} b\right)\right\}$ and $\left\{n d(x) \mid x \in \operatorname{nil}\left(R /\left(a R:_{R} b\right)\right)\right\}$ are finite. In particular, $R / P$ is finite. Also $P$ is a minimal prime of $\left(a R:_{R} b\right)$. That is $P$ is a weak Bourbaki prime of $a R$. Since $R$ is Noetherian, $P$ is an associated prime of $a R$; that is $P=\left(a R:_{R}\right.$ $c$ ) for some $c \in R$. The converse is clear.

Examples of almost Dedekind domains $R$ having finite residue fields for which the rings $\operatorname{Int}(R)$ are not Prüfer are constructed in [10, 8]. Since the results in this section cast some light on these examples we review briefly the method used for constructing them. This construction allows us to show that the condition that $\operatorname{Int}(R) \nsubseteq R_{M}[X]$ for each maximal ideal $M$ of $R$, is not equivalent to the condition, considered in the next section, that $\operatorname{Int}(R)_{S}=\ln t\left(R_{S}\right)$ for each multiplicative subset $S$ of $R$. For the details
of this construction see [10], where it is given in much greater generality than needed here. If $A \subseteq B$ are Dedekind domains and $P B=Q_{1}^{e_{1}} Q_{2}^{e_{1}} \cdots Q_{n}^{e_{n}}$ for a prime ideal $P$ of $A$ and primes $Q_{1}, \ldots, Q_{n}$ of $B$, we write $e\left(Q_{i}, P\right)$ for the ramification index $e_{i}$, and $\left[B / Q_{i}: A / P\right]$ for the residue degree.

Let $P_{0}, \ldots, P_{n}$ be prime ideals of the ring of integers $A_{0}$ of a number field $K_{0}$, let $K_{0} \subseteq K_{1} \subseteq \cdots$ be a sequence of finite extension fields and let $K=\bigcup K_{i}$. Let $D_{0}=\left(A_{0}\right)_{S}$, where $S=A_{0}-\left(P_{1} \cup \cdots \cup P_{n}\right)$, and let $D_{i}$ and $D$ be the integral closures of $D_{0}$ in $K_{i}$ and $K$, respectively. For each $j \in\{1,2, \ldots, n\}$ consider a sequence of prime ideals $Q_{i}$ of $D_{i}$ lying over $P_{j}$ such that $Q_{i+1} \cap D_{i}=Q_{i}$. Then by [1, Corollary 3.6], $D$ is almost Dedekind if and only if
( $\mathrm{a}^{\prime}$ ) for each such sequence of prime ideals the set of ramification indices $\left\{e\left(Q_{i}, P_{j}\right) \mid\right.$ $\left.i \in \mathbb{Z}_{+}\right\}$is bounded.

For $D$ to have finite residue fields it is necessary and sufficient that
$\left(b^{\prime}\right)$ for each such sequence of prime ideals the set of residue degrees $\left\{\left[D_{i} / Q_{i}\right.\right.$ : $\left.\left.D_{0} / P_{j}\right] \mid i \in \mathbb{Z}_{+}\right\}$is bounded.

To produce an example of an almost Dedekind domain $R$ with finite residue fields for which $\operatorname{Int}(R)$ is not Prüfer, Gilmer shows [10, Example 14] that condition (b) of the following theorem is strictly stronger than condition $\left(b^{\prime}\right)$. He also shows [10, Theorem 13] that (b) is a necessary condition for $\ln t(R) \nsubseteq R_{M}[X]$ for some maximal ideal $M$ of $R$. (The condition $\operatorname{Int}(R) \nsubseteq R_{M}[X]$ is clearly necessary for $\operatorname{Int}(R)$ to be Prüfer since every overring of a Prüfer domain is Prüfer.) To furnish more examples where $\operatorname{Int}(R) \not \equiv R_{M}[X]$ and thus to answer some questions in [10], Chabert shows [8, Example 6.2] that condition (a) of the following theorem is strictly stronger than condition ( $\mathrm{a}^{\prime}$ ), and [8, Lemma 1.6] that (a) is a necessary condition for $\operatorname{Int}(R) \nsubseteq$ $R_{M}[X]$ for some maximal ideal $M$ of $R$. In the proof of the following theorem we use Theorem 1.5 to prove that (a) and (b) are necessary for $\operatorname{Int}(R) \nsubseteq R_{M}[X]$. As observed in [10] and [8] this does not require that $D_{0}$ be Dedekind. We also give the converse in the important case that $D_{0}$ is Dedekind. This part of Theorem 1.9 , together with [8, Example 6.5] shows that condition (1) of Theorem 1.9 is strictly weaker than the condition that $\operatorname{Int}(R)_{S}=\operatorname{Int}\left(R_{S}\right)$ for each multiplicative subset $S$ of $R$, for $R$ an almost Dedekind domain with finite residue fields.

Theorem 1.9. Let $D_{0}$ be an almost Dedekind domain with quotient field $K_{0}$. Let $K_{0} \subseteq K_{1} \subseteq \cdots$ be a sequence of finite extension fields with $K=\bigcup K_{i}$. Let $D_{i}$ and $D$ be the integral closures of $D_{0}$ in $K_{i}$ and $K$, respectively. Consider the following statements:
(1) $\operatorname{Int}(D) \nsubseteq D_{M}[X]$ for each maximal ideal $M$ of $D$.
(2) (a) For each maximal ideal $P_{0}$ of $D_{0},\left\{e\left(M, P_{0}\right) \mid M \in \operatorname{Spec}(D)\right.$ with $M \cap D_{0}=$ $\left.P_{0}\right\}$ is bounded; and
(b) for each maximal ideal $P_{0}$ of $D_{0},\left\{|D / M| \mid M \in \operatorname{Spec}(D)\right.$ with $\left.M \cap D_{0}=P_{0}\right\}$ is bounded.

Then $(1) \Rightarrow$ (2). In particular, if $\operatorname{lnt}(D)$ is Prüfer then (a) and (b) hold. If $D_{0}$ is Dedekind, then (2) $\Rightarrow$ (1).

Proof. (1) $\Rightarrow$ (2)(b) Assume that (b) fails for the maximal $P_{0}$ of $D_{0}$. Since $D_{1}$ has only finitely many maximal ideals lying over $P_{0}$, for one of these, say $P_{1}$, the set $\left\{\mid D / M \| M \in \operatorname{Spec}(D)\right.$ with $\left.M \cap D_{1}=P_{1}\right\}$ is unbounded. Similarly, since $D_{2}$ has only finitely many maximal ideals lying over $P_{1}$, for one of these, say $P_{2}$, the set $\left\{|D / M| \mid M \in \operatorname{Spec}(D)\right.$ with $\left.M \cap D_{2}=P_{2}\right\}$ is unbounded. We similarly get a prime $P_{i}$ of $D_{i}$ for each $i$. Let $M=\bigcup_{i=1}^{\infty} P_{i}$, a maximal ideal of $D$.

Since $D$ is Prüfer, the ideals $\left(a D:_{D} b\right)$ are finitely generated. Thus, to show $\operatorname{Int}(D) \subseteq D_{M}[X]$ it suffices by Theorem 1.5 to show that for each finitely generated ideal $I \subseteq M$, the set $\{|D / P| \mid P$ is a maximal ideal of D containing $I\}$ is unbounded. But if $I=\left(a_{1}, \ldots, a_{n}\right) D$, then $\left\{a_{1}, \ldots, a_{n}\right\} \subseteq D_{i} \cap M=P_{i}$ for some $i$. Thus, $\{|D / P| \mid P$ is a maximal ideal of $D$ containing $I\} \supseteq\{|D / P| \mid P$ is a maximal ideal of $D$ lying over $P_{i}$ \} is unbounded.
(1) $\Rightarrow$ (2)(a) Assume that (a) fails for the maximal $P_{0}$ of $D_{0}$. Since $D_{1}$ has only finitely many maximal ideals lying over $P_{0}$, for one of these, say $P_{1}$, the set $\left\{e\left(M, P_{1}\right) \mid M\right.$ is a maximal ideal of $D$ lying over $\left.P_{1}\right\}$ unbounded. Similarly, since $D_{2}$ has only finitely many maximal ideals lying over $P_{1}$, for one of these, say $P_{2}$, the set $\left\{e\left(M, P_{2}\right) \mid M\right.$ is a maximal ideal of $D$ lying over $\left.P_{2}\right\}$ unbounded. Let $M=\bigcup_{i=1}^{\infty} P_{i}$, a maximal ideal of $D$.

To show $\operatorname{Int}(D) \subseteq D_{M}[X]$ it suffices by Theorem 1.5 to show that for each finitely generated ideal $I \subseteq M,\{n d(x) \mid x \in \operatorname{nil}(D / I)\}$ is unbounded. But if $I=\left(a_{1}, \ldots, a_{n}\right) D$, then $\left\{a_{1}, \ldots, a_{n}\right\} \subseteq D_{i} \cap M=P_{i}$ for some $i$. Let $t_{i} \in \operatorname{rad}\left(\left(a_{1}, \ldots, a_{n}\right) D_{i}\right)$ generate $P_{i}\left(D_{i}\right)_{P_{i}}$. Then in $D / I$ we have $0 \neq \overline{t_{0}}=\bar{s}\left(\bar{t}_{i}\right)^{e\left(P_{i}, P_{0}\right)}$ where $\bar{s}$ is a unit of $D_{M} / I D_{M}$. So the nilpotency degree of $D / I$ is not bounded.
(2) $\Rightarrow$ (1) Assume that $D_{0}$ is Dedekind, that (a) and (b) hold, and let $M$ be a maximal ideal of $D$. To show that $\operatorname{Int}(D) \nsubseteq D_{M}[X]$ it suffices by Theorem 1.5 to find elements $a, b \in D$ with $\left(a D:_{D} b\right) D_{M} \neq D_{M}$ such that the two sets of integers $\{|D / P| \mid P \in$ $\left.V\left(a D:_{D} b\right)\right\}$ and $\left\{n d(x) \mid x \in \operatorname{nil}\left(D /\left(a D:_{D} b\right)\right)\right\}$ are bounded. Let $P_{0}=D_{0} \cap M$ and let $a \in P_{0}$ be such that $a\left(D_{0}\right)_{P_{0}}=P_{0}\left(D_{0}\right)_{P_{0}}$. Since $P_{0}$ is finitely generated, there exists $s \in D_{0}-P_{0}$ such that $s P_{0} \subseteq a D_{0}$. Then $P_{0} \subseteq\left(a D_{0}:_{D_{0}} s\right)$, and since $P_{0}$ is maximal we have $P_{0}=\left(a D_{0}:_{D_{0}} s\right)$. Since $D_{0}$ is Prüfer, $D$ is a flat $D_{0}$-module and hence $P_{0} D=$ $\left(a D_{0}:_{D_{0}} s\right) D=\left(a D:_{D} s\right)$. Thus by hypothesis (b), the set $\left\{|D / P| \mid P \in V\left(a D:_{D} s\right)\right\}$ is bounded. To show that the set $\left\{n d(x) \mid x \in \operatorname{nil}\left(D /\left(a D:_{D} s\right)\right)\right\}$ is bounded, by hypothesis (a) we may choose $k \in \mathbb{Z}_{+}$such that $e\left(P, P_{0}\right)<k$ for every $P \in V\left(P_{0} D\right)$. Let $x \in D$ be such that its image $\bar{x}$ is in $\operatorname{nil}\left(D /\left(a D:_{D} s\right)\right.$ ). Since $\left(a D:_{D} s\right)=P_{0} D$, we get $x \in P$ for each $P \in V\left(P_{0} D\right)$. But $x \in D_{i}$ for some $i$, and then $x \in P_{i}$ for each $P_{i} \in V\left(P_{0} D_{i}\right)$. Let $P_{0} D_{i}=Q_{1}^{e_{i}} \cap \cdots \cap Q_{n}^{e_{n}}$, where the $Q_{i}$ are the primes of $D_{i}$ lying over $P_{0}$. Then $x \in Q_{i}$ for each $i$ and hence $x^{k} \in Q_{1}^{e_{1}} \cap \cdots \cap Q_{n}^{e_{n}}=P_{0} D_{i} \subseteq P_{0} D=\left(a D:_{D} s\right)$.

## 2. A characterization of when $\operatorname{Int}\left(R_{P}\right)=\operatorname{Int}(R)_{R-P}$

In this section we characterize those almost Dedekind domains $R$ such that $\operatorname{Int}\left(R_{P}\right)=$ $\operatorname{Int}(R)_{R-P}$ for each maximal ideal $P$ of $R$.

Lemma 2.1. Let $R$ be an integral domain and let $P \in \operatorname{Spec}(R)$ be such that $R / P$ is finite and $\operatorname{Int}\left(R_{P}\right)=\operatorname{Int}(R)_{(R-P)}$. If $t \in R$ is such that $t R_{P}=P R_{P}$ and $\left\{a_{0}, \ldots, a_{q-1}\right\}$ is a set of representatives of $R / P$, then there exists $s \in R-P$ such that for each $Q \in D(s) \cap V(t R)$, we have $t R_{Q}=Q R_{Q}$ and $\left\{a_{0}, \ldots, a_{q-1}\right\}$ is a set of representatives of $R / Q$.

Proof. Let $g=\left(X-u_{0}\right)\left(X-a_{1}\right) \cdots\left(X-a_{q-1}\right)$ and $f=g / t$. Then $f \in \operatorname{Int}\left(R_{P}\right)$ which is $\operatorname{Int}(R)_{(R-P)}$ by hypothesis. Let $s_{1} \in R-P$ be such that $s_{1} f \in \operatorname{Int}(R)$, let $s_{2}=d_{q-1}\left(a_{0}, \ldots, a_{q-1}\right)$ and let $s=s_{1} s_{2}$.

Let $Q \in D(s) \cap V(t R)$. Since $s_{2} \notin Q, a_{0}, \ldots, a_{q-1}$ represent distinct cosets in $R / Q$, and since $s g(x) \in t R \subseteq Q$ for each $x \in R,\left\{a_{0}, \ldots, a_{q-1}\right\}$ is a complete set of representatives of $R / Q$. Let $x \in Q$. Then $s g\left(x+a_{0}\right) / t=s f\left(x+a_{0}\right) \in R \Rightarrow s g\left(x+a_{0}\right) \in t R \subseteq Q$. But $\operatorname{sg}\left(x+a_{0}\right)=s x\left(x+a_{0}-a_{1}\right) \cdots\left(x+a_{0}-a_{q-1}\right)$, and since $s_{3}=s\left(x+a_{0}-a_{1}\right) \cdots(x+$ $\left.a_{0}-a_{q-1}\right) \notin Q, x=\left(x s_{3}\right) / s_{3} \in t R_{Q}$. Therefore, $t R_{Q}=Q R_{Q}$.

Lemma 2.2. Let $P$ and $Q$ be prime ideals of a ring $R$ and let $f: R \rightarrow R / P$ and $g: R \rightarrow R / Q$ be the canonical maps. The following statements are equivalent.
(a) Each set $T \subseteq R$ of representatives for $R / P$ is also a set of representatives for $R / Q$.
(b) There exists a set $T \subseteq R$ which is a set of representatives for both $R / P$ and $R / Q$.
(c) There is a bijection $\varphi: R / P \rightarrow R / Q$ such that $\varphi \circ f=g$.

Proof. The implication (a) $\Rightarrow(b)$ is clear. For $(b) \Rightarrow$ (c) if $T$ is a set of representatives for both $R / P$ and $R / Q$, it is clear that $\varphi$ can be defined as $g_{1} \circ f_{1}^{-1}$ where $f_{1}, g_{1}$ are the restrictions of $f, g$ to $T$. For (c) $\Rightarrow$ (a) let $\varphi: R / P \rightarrow R / Q$ be such that $\varphi \circ f=g$. Let $T$ be a set of representatives of $R / P$. Then $R / Q=\{\varphi(f(a)) \mid a \in T\}=\{g(a) \mid a \in T\}$, and $g(a) \neq g(b)$ for $a \neq b \in T$.

Theorem 2.3. Let $R$ be an almost Dedekind domain with finite residue fields and let $M$ be a maximal ideal of $R$. Then $\operatorname{Int}\left(R_{M}\right)=\operatorname{Int}(R)_{(R-M)}$ if and only if the following hold for each nonzero $a \in M$ :
(a) The radical of aR is finitely generated; and
(b) there is a partition $\left\{\mathscr{T}_{1}, \ldots, \mathscr{T}_{m}\right\}$ of $V(a R)$ into subsets which are open in $V(a R)$ such that for each $i \in\{1, \ldots, m\}$ there exists a set $T_{i} \subseteq R$ which is a set of representatives of $R / Q$ for each $Q \in \mathscr{\mathscr { F } _ { i }}$.

Proof. $(\Rightarrow)$ Let $J=\operatorname{rad}(a R)$. Since $R$ is almost Dedekind, by Lemma 2.1 we get that for each $Q \subset V(a R)$ there exists $t(Q) \subset J$, a set $T(Q) \subseteq R$ and $s(Q) \subset R \quad Q$ such that for each $P \in D(s(Q)) \cap V(J)$ we have that $t(Q) R_{P}=P R_{P}$ and $T(Q)$ is a set of representatives of $R / P$. Since $\{D(s(Q)) \mid Q \in V(J)\}$ is an open cover of the compact set $V(J)$ there exist $s_{1}, \ldots, s_{k} \in R$ and corresponding elements $t_{1}, \ldots, t_{k} \in J$ and finite subsets $T_{1}, \ldots, T_{k}$ of $R$ such that if $Q \in V(J)$ then for some $i$ we have $Q \in D\left(s_{i}\right), T_{i}$
is a set of representatives of $R / Q$, and $Q R_{Q}=t_{i} R_{Q}$. It follows that $J=\left(a, t_{1}, \ldots, t_{k}\right) R$. This proves (a).

To prove (b), observe that we can define a relation $\sim$ on the set $V(a R)$ by $P \sim Q$ if there is a subset $T \subseteq R$ such that $T$ is a set of representatives for both $R / P$ and $R / Q$. It is clear that $\sim$ is reflexive and symmetric, and it follows from Lemma 2.2 that $\sim$ is transitive. By the above paragraph there are only finitely many equivalence classes $\mathscr{T}_{1}, \ldots, \mathscr{T}_{m}$ of $\sim$. Then it follows from Lemma 2.1 that each $\mathscr{T}_{i}$ is open in the Zariski topology on $V(a R)$ (and thus also closed).
$(\Leftarrow)$ It suffices to show that $\ln t\left(R_{M}\right) \subseteq(\operatorname{Int}(R))_{(R-M)}$ by Proposition 1.4. For this it suffices to show that there exists a basis $\left\{g_{n} \mid n \geq 0\right\}$ of $\operatorname{Int}\left(R_{M}\right)$ as an $R_{M}$-module such that for each $n$ there exists $u_{n} \in R-M$ with $u_{n} g_{n} \in \operatorname{Int}(R)$.

Let $a \in M$ be such that $a R_{M}=M R_{M}$. Then $\operatorname{rad}(a R)=J$ is finitely generated by hypothesis. Also by hypothesis there is a partition $\left\{\mathscr{T}_{1}, \ldots, \mathscr{T}_{m}\right\}$ of $V(a R)$ into open subsets $\mathscr{T}_{i}$ such that for each $i \in\{1, \ldots, m\}$ we have a set $T_{i} \subseteq R$ which is a set of representatives of $R / Q$ for each $Q \in \mathscr{T}_{i}$. Assume $M \in \mathscr{T}_{1}$. Let $\mathscr{T}_{1}^{\prime}=\left\{Q \in \mathscr{T}_{1} \mid a R_{Q}=\right.$ $\left.Q R_{Q}\right\}$, and let $\mathscr{T}_{1}^{\prime \prime}=\left\{Q \in \mathscr{T}_{1} \mid a R_{Q} \neq Q R_{Q}\right\}$. It follows from Lemma 2.1 that $\mathscr{T}_{1}^{\prime}$ is open in the Zariski topology on $V(a R)$. We claim that $\mathscr{T}_{1}^{\prime \prime}$ is also open. To see this assume $a R_{Q}=Q^{n} R_{Q}$ for some prime $Q \in V(a R)$. There exists $t \in J$ such that $t R_{Q}=Q R_{Q}$, and then $a / 1=u t^{n} / v$ for some $u, v \in R-Q$. Then by the case $n=1$ there exists $s \in R-Q$ such that $t R_{H}=H R_{H}$ for each $H \in D(s) \cap V(t R)$. Then $t R_{H}=H R_{H}$ for each $H \in D(u v s) \cap V(t R)$. But $D(u v s) \cap V(t R)=D(u v s) \cap V(a R)$, and thus $a R_{H}=t^{n} R_{H}=H^{n} R_{H}$ for each $H \in D(u v s) \cap V(a R)$. Since $\mathscr{T}_{1}^{\prime \prime}=\bigcup_{n>1} \mathscr{S}_{n}$ where $\mathscr{S}_{n}=\left\{Q \in \mathscr{T}_{1} \mid a R_{Q}=Q^{n} R_{Q}\right\}, \mathscr{T}_{1}^{\prime \prime}$ is open.

We now have the partition $\left\{\mathscr{T}_{1}^{\prime}, \mathscr{T}_{1}^{\prime \prime}, \mathscr{T}_{2}, \ldots, \mathscr{T}_{m}\right\}$ of $V(a R)$ into sets which are open in the Zariski topology on $V(a R)$. We now change notation and denote $\mathscr{T}_{1}^{\prime}$ by $\mathscr{T}_{0}, \mathscr{T}_{1}^{\prime \prime}$ by $\mathscr{T}_{1}$ and let $\mathscr{T}_{2}, \ldots, \mathscr{T}_{m}$ retain their former meanings. Then for each positive integer $k$ we can write

$$
R / a^{k} R=\left(R / a^{k} R\right) c_{k 0} \oplus \cdots \oplus\left(R / a^{k} R\right) e_{k m}
$$

for some idempotents $e_{k i}$ of $R / a^{k} R$, where the image of $e_{k i}$ in $\left(R / a^{k} R\right)_{Q}$ is the identity if $Q \in \mathscr{F}_{i}$, and the image of $e_{k i}$ in $\left(R / a^{k} R\right)_{Q}$ is zero if $Q \in V(a R)-\mathscr{F}_{i}$ [3, Proposition 15, p. 103]. Let $T=\left\{a_{0}, \ldots, a_{q-1}\right\} \subseteq R$ be a set of representatives of $R / Q$ for each $Q \in \mathscr{F}_{0} \cup \mathscr{F}_{1}$. For each $n \in \mathbb{Z}_{+}$write $n$ in its $q$-adic expansion

$$
n=u_{0}+u_{1} q+u_{2} q^{2}+\cdots+u_{r_{n}} q^{r_{n}}, \quad 0 \leq u_{j}<q .
$$

Define

$$
s_{n}=a_{u_{0}}+a_{u_{1}} a+a_{u_{2}} a^{2}+\cdots+a_{u_{r_{n}}} a^{r_{n}} .
$$

Define $f_{0}, f_{1}, \ldots \in K[X]$ by

$$
f_{0}=1, f_{j}=X\left(X-s_{1}\right)\left(X-s_{2}\right) \cdots\left(X-s_{j-1}\right)
$$

Let

$$
k_{n}=\sum_{j=1}^{\infty}\left[\frac{n}{q^{j}}\right] \quad \text { and } \quad g_{n}=\frac{f_{n}}{a^{k_{n}}} .
$$

Since $\left\{a_{0}, \ldots, a_{q-1}\right\}$ is a set of representatives of $R / Q$ and $a R_{Q}=Q R_{Q}$ for each $Q \in \mathscr{F}_{0},\left\{g_{n} \mid n \geq 0\right\}$ is an $R_{Q}$-basis for $\operatorname{Int}\left(R_{Q}\right)$ for each $Q \in \mathscr{F}_{0}$ by [10, Proposition 9]. Fix $n$ and let $d_{i} \in R$ be a preimage of $e_{k_{n} i}$ for each $i \in\{1,2, \ldots, m\}$. Since $d_{0}=1 \bmod \left(a^{k_{n}} R_{M}\right)$ then $d_{0} \notin M$. Since $d_{0} \in a^{k_{n}} R_{Q}$ for each $Q \in \mathscr{T}_{1} \cup \mathscr{T}_{2} \cup \cdots \cup \mathscr{F}_{m}$, then $d_{0} f_{n}$ has the property that $d_{0} f_{n}(R) \subseteq a^{k_{n}} R_{Q}$ for each $Q \in \mathscr{T}_{1} \cup \mathscr{T}_{2} \cup \cdots \cup \mathscr{T}_{m}$. Thus, $d_{0} g_{n}(R) \subseteq R_{Q}$ for each $Q \in \mathscr{T}_{1} \cup \mathscr{T}_{2} \cup \cdots \cup \mathscr{T}_{m}$. Also clearly $d_{0} g_{n}(R) \subseteq \cap\left\{R_{Q} \mid Q \notin\right.$ $V(a R)\}$ and $d_{0} g_{n}(R) \subseteq \cap\left\{R_{Q} \mid Q \in \mathscr{T}_{0}\right\}$. Thus $d_{0} g_{n}(R) \subseteq \cap\left\{R_{Q} \mid Q \in \operatorname{Spec}(R)\right\}=R$. Therefore, $d_{0} g_{n} \in \operatorname{Int}(R)$.

Theorem 2.4. Let $R$ be an almost Dedekind domain with finite residue fields. The following statements are equivalent:
(1) $\operatorname{Int}\left(R_{P}\right)=\operatorname{Int}(R)_{(R-P)}$ for each maximal ideal $P$ of $R$.
(2) $\operatorname{Int}\left(R_{S}\right)=\ln t(R)_{S}$ for each multiplicative subset $S$ of $R$.
(3) The following hold for each nonzero $a \in R$ :
(a) The radical of $a R$ is finitely generated; and
(b) there is a partition $\left\{\mathscr{T}_{1}, \ldots, \mathscr{T}_{m}\right\}$ of $V(a R)$ into subsets which are open in $V(a R)$ such that for each $i \in\{1, \ldots, m\}$ there exists a set $T_{i} \subseteq R$ which is a set of representatives of $R / Q$ for each $Q \in \mathscr{T}$.

Proof. That (2) implies (1) is clear, and the statements (1) and (3) are equivalent by Theorem 2.3. Thus, it suffices to show that (3) implies (2). Let $S$ be a multiplicative subset of $R$. We may check the equality $\operatorname{Int}\left(R_{S}\right)=\operatorname{Int}(R)_{S}$ locally at primes of $R_{S}$. Thus let $P \in \operatorname{Spec}(R)$ with $P \cap S=\emptyset$. Since the properties (a) and (b) clearly pass from $R$ to $R_{S}$, from Theorem 2.3 we get $\operatorname{lnt}\left(R_{S}\right)_{\left(R_{s}-P R_{S}\right)}=\operatorname{lnt}\left(\left(R_{S}\right)_{P R_{S}}\right)=\ln t\left(R_{P}\right)=$ $\operatorname{Int}(R)_{(R-P)}=\left(\operatorname{Int}(R)_{S}\right)_{\left(R_{S}-P R_{S}\right)}$.

In the following corollary we collect a few immediate consequences of Theorems 2.3 and 2.4.

Corollary 2.5. Let $R$ be an almost Dedekind domain and let $I$ be a nonzero finitely generated ideal of $R$. If $R / P$ is finite and $\operatorname{Int}\left(R_{P}\right)=\operatorname{Int}(R)_{(R-P)}$ for each $P \in V(I)$, then the following hold:
(a) There exists a finite set $T \subseteq R$ which contains a set of representatives of $R / Q$ for each $Q \in V(I)$. In particular, the set $\{\mid R / P \| P \in V(I)\}$ is finite.
(b) rad(I) is finitely generated.
(c) The group of units $(R / I)^{*}$ of $R / I$ has finite exponent.
(e) If $R$ has Noetherian spectrum, then $R$ is Dedekind.

Proof. Part (a) follows easily from Theorem 2.3. For the proof of (b) let $I=\left(t_{1}, \ldots, t_{n}\right)$. Then $J_{i}=\operatorname{rad}\left(t_{i} R\right)$ is finitely generated by Theorem 2.3, and $\operatorname{rad}(I)=J_{1}+\cdots+J_{n}$, as can be seen by checking locally. Thus $\operatorname{rad}(I)$ is finitely generated. The proof of part (c) follows from Corollary 1.3. For (e) recall that $R$ has Noetherian spectrum if and only if each prime ideal of $R$ is the radical of a finitely generated ideal [13, p. 276]. Thus since the radical of a finitely generated ideal of $R$ is finitely generated, the hypothesis in part (e) implies that each prime ideal of $R$ is finitely generated, and thus $R$ is Noetherian.

## 3. Glad domains

In this section we give some results on the class of glad domains which were defined in [17] and give their relationship to the rings described in Theorem 2.3. By an overring of a domain $D$ we mean a ring $R$ with the same quotient field as $D$ which contains $D$ as a subring. Following [17] we say a domain $D$ with quotient field $K \neq D$ is a glad domain if the following hold:
(1) $D=\bigcap_{i \in A} V_{i}$ where $\left\{V_{i} \mid i \in \Lambda\right\}$ is a family of Noetherian valuation overrings of $R$. Let $v_{i}$ be the normed additive valuation associated with $V_{i}$, and let $M_{i}$ be the maximal ideal of $V_{i}$.
(2) There is a monic polynomial $f \in D[X]$ of degree $>1$ such that for each $i \in A$ and each $a \in V_{i}, f(a)$ is a unit of $V_{i}$.
(3) For each $a \in D$ the set $\left\{v_{i}(a) \mid i \in A\right\}$ is bounded.
(4) There exists $t \in D$ such that $t V_{i}=M_{i}$ for each $i \in \Lambda$.
(5) There exists a finite subset $T$ of $D$ which is a set of representatives for $V_{i} / M_{i}$ for each $i \in \Lambda$.

Before considering the relationship of glad domains to the rings $R$ for which $\operatorname{lnt}(R)_{P}$ $=\operatorname{Int}(R)_{(R-P)}$ for each maximal ideal $P$ of $R$, we first give an alternate characterization of glad domains. (For simplicity of some of our later statements we are departing slightly from the definition in [17] by not requiring the family $\left\{V_{i} \mid i \in \Lambda\right\}$ to be infinite. Thus, we include the case that $D$ is Dedekind.)

Proposition 3.1. Let $D$ be an almost Dedekind domain with quotient field $K \neq D$. Then $D$ is a glad domain if and only if the following statements hold:
(a) Each principal ideal of $D$ contains a power of its radical.
(b) The Jacobson radical $J$ of $D$ is a nonzero principal ideal.
(c) There exists a finite subset $T$ of $D$ which is a set of representatives for $D / P$ for each maximal ideal $P$ of $D$.

Proof. If $D$ is a glad domain then (b) and (c) hold by [17, Proposition 9]. To prove statement (a), let $a \in D$ and let $I=\operatorname{rad}(a D)$. Let $k=\sup \left\{v_{i}(a) \mid i \in \Lambda\right\}$, and let $b_{1}, \ldots, b_{k} \in I$. Now if $i \in \Lambda$ we have $v_{i}\left(b_{1} b_{2} \cdots b_{k}\right) \geq v_{i}(a)$. Thus $\left(b_{1} b_{2} \cdots b_{k}\right) / a \in V_{i}$ for each $i$, and therefore $b_{1} b_{2} \cdots b_{k} \in a D$. Thus, $I^{k} \subseteq a R$.

Conversely, assume $D$ is almost Dedekind domain satisfying (a)-(c). Then property (1) holds with $\left\{V_{i} \mid i \in \Lambda\right\}=\left\{D_{P} \mid P\right.$ is a maximal ideal of $\left.R\right\}$. For (2), let $T=$ $\left\{a_{1}, \ldots, a_{q}\right\}$ be a set of representatives for each residue field of $D$, which exists by (c). Then $f=1+\prod_{i-1}^{q}\left(X-a_{i}\right)$ is clearly a unit valued polynomial for $D_{P}$ for each maximal ideal $P$ of $D$. For property (3) let $a \in D$ and let $I=\operatorname{rad}(a D)$. By property (a) we have $I^{n} \subseteq a R$ for some $n \geq 1$. Thus if $P$ is a maximal ideal of $D$ we have $P^{n} D_{P} \subseteq I^{n} D_{P} \subseteq a D_{P}$. Thus $v_{P}(a) \leq n$, where $v_{P}$ denotes the normalized valuation for $D_{P}$. Thus (3) holds. Properties (4) and (5) above follow immediately from (b) and (c).

Corollary 3.2. In a glad domain, the radical of a finitely generated ideal is finitely generated.

Proof. Let $I$ be a nonzero finitely generated ideal of the glad domain $R$ and let $t R$ be the Jacobson radical of $R$. Then $\operatorname{rad}(I)=(I, t) R$. Indeed it suffices to check this locally at primes $P$ containing $I$. But for such a prime $P$ we have $\operatorname{rad}(I) R_{P}=P R_{P}=$ $(I, t) R_{P}$.

The next result shows that the glad domains play a role in the class of almost Dedekind domains $R$ with finite residue fields for which $\operatorname{Int}\left(R_{S}\right)=\operatorname{Int}(R)_{S}$, which is similar to the place occupied by the Noetherian valuation rings in the class of Dedekind domains.

Proposition 3.3. Let $R=\bigcap_{i=1}^{m} R_{i}$ with each $R_{i}$ a glad overring of $R$. Then the following hold:
(1) $R_{i}=R_{S}$ where $S=R-\bigcup\left\{Q \cap R \mid Q\right.$ a maximal ideal of $\left.R_{i}\right\}$.
(2) $R$ is an almost Dedekind domain with finite residue fields.
(3) $R$ is Bezout.

Proof. For (1) we can adapt the proof from [15, Theorem 107]. Let $R_{i}=\bigcap\left\{V_{i j} \mid j \in \Lambda_{i}\right\}$ for $i=1, \ldots, m$, where $V_{i j}$ is a Noetherian valuation ring with maximal ideal $M_{i j}$. By the definition of glad domain, for each fixed $i$, all of the residue fields $V_{i j} / M_{i j}$ are isomorphic. Let $q_{i}$ be the order of $V_{i j} / M_{i j}, j \in \Lambda_{i}$. Let $k=q_{1} q_{2} \cdots q_{m}\left(q_{1}-1\right)\left(q_{2}-\right.$ 1) $\cdots\left(q_{m}-1\right)$. Let $x \in R_{1}$. It follows that for each positive integer $n$ which is relatively prime to $k$, and for each $V_{i j}$ in which $x$ is a unit, the element $u=1+x+\cdots+x^{n-1}$ is also a unit of $V_{i j}$. Indeed
(a) if $x$ maps to 1 in $V_{i j} / M_{i j}$, this follows since $n$ is not divisible by the characteristic of $V_{i j} / M_{i j}$, and
(b) if the image $x^{*}$ of $x$ in $V_{i j} / M_{i j}$ is not $1, u=1+x^{*}+\cdots+\left(x^{*}\right)^{n-1}=\left[1-\left(x^{*}\right)^{n}\right] /$ ( $1-x^{*}$ ) is a unit since $n$ is relatively prime to the order of the element $x^{*}$ in the group of units of $V_{i j} / M_{i j}$.

Now let $P_{i j}=M_{i j} \cap R$. We must show that $R_{i}=R_{S_{i}}$, where $S_{i}=R-\bigcup\left\{P_{i j} \mid j \in A_{i}\right\}$, and we may take $i=1$. It is clear that $R_{S_{1}} \subseteq R_{1}$. Let $x \in R_{1}$, and choose $k$ so that
$u=1+x+\cdots+x^{n-1}$ is as in the above paragraph. Let $s=1 / u$. We have the following cases:
(i) If $x \in M_{i j}$, then $s \in V_{i j}-M_{i j}$.
(ii) If $x \in V_{i j}-M_{i j}$, then $s \in V_{i j}-M_{i j}$.
(iii) If $x \notin V_{i j}$, then $y=1 / x \in M_{i j}$, and then $s=y^{n-1} /\left(1+y+\cdots+y^{n-1}\right) \in M_{i j}$.

Thus $s \in R$. Also since $x \in R_{1}, s \in V_{1 j}-M_{1 j}$ for each $j$. Thus, $s \in R-P_{1 j}$ for each $j$. It remains to show that $s x \in R$. That is we must show $s x \in V_{i j}$ for each $i$ and $j$. Thus we need only consider case (iii) above. In this case we have

$$
s x=y^{n-2} /\left(1+y+\cdots+y^{n-1}\right) \in V_{i j}
$$

This proves (1). The statement (2) follows easily from this.
For (3) let $I \neq\{0\}$ be a finitely generated ideal of $R$. It follows that the Jacobson radical $J$ of $R$ is non-zero. Let $t \in J-\{0\}$ and $y \in I-\{0\}$. Then by [14, Theorem 3.1] there exists an element $x \in I$ such that $I=x R+y t R$. But then $I \subseteq x R+J I$, and thus $I=x R$ by Nakayama's Lemma.

Theorem 3.4. Let $R$ be an almost Dedekind domain with finite residue fields. Then $\operatorname{Int}\left(R_{P}\right)=\operatorname{Int}(R)_{(R-P)}$ for each $P \in \operatorname{Spec}(R)$ if and only if for each non-zero a $a \in$, there is a partition $\left\{\mathscr{T}_{1}, \ldots, \mathscr{T}_{m}\right\}$ of $V(a R)$ into open sets such that the ring $R_{i}=$ $\bigcap\left\{R_{Q} \mid Q \in \mathscr{T}_{i}\right\}$ is a glad domain for $i=1, \ldots, m$.

Proof. ( $\Rightarrow$ ) Let $a \in R$ and let $I=\operatorname{rad}(a R)$. It follows from Theorem 2.3 that we may let $I=\left(y_{1}, \ldots, y_{k}\right) R$, and that there is a partition $\left\{\mathscr{T}_{1}, \ldots, \mathscr{T}_{m}\right\}$ of $V(a R)$ into open sets such that for each $i=1, \ldots, m$ we have:
(a) a set $T_{i} \subseteq R$ which is a set of representatives of $R / Q$ for each $Q \in \mathscr{F}_{i}$, and
(b) an element $t_{i} \in\left\{y_{1}, \ldots, y_{k}\right\}$ such that $t_{i} R_{Q}=Q R_{Q}$ for each $Q \in \mathscr{T}_{i}$.

Let $R_{i}=\bigcap\left\{R_{Q} \mid Q \in \mathscr{T}_{i}\right\}$ for $i=1, \ldots, m$. We claim that each $R_{i}$ is a glad domain. To see this we observe that the family $\left\{R_{P} \mid P \in \mathscr{T}_{i}\right\}$ is a family of valuation overrings of $R_{i}$ satisfying the five properties of the definition of glad domain. Indeed these are all immediate from the definition of the $\mathscr{F}_{i}$ except possibly (3). For this let $b \in R_{i}$. Then $b=c / d, c, d \in R$. Let $H$ be the radical of $c R$ in $R$, let $n$ be such that $H^{n} \subseteq c R$, and let $P \in \mathscr{T}_{i}$. Then $v_{P}(c) \leq n$, and from $d b=c$ we get $v_{P}(d)+v_{P}(b)=v_{P}(c) \leq n$. Since $v_{P}(d) \geq 0$, we get $v_{P}(b) \leq n$.
$(\Leftrightarrow)$ If for each nonzero $a \in R$ there is a partition as above, then by the proof of Theorem 2.3 it follows that $\operatorname{Int}\left(R_{P}\right)=\operatorname{Int}(R)_{(R-P)}$ for each $P \in \operatorname{Spec}(R)$. (Alternately, from Proposition 3.1 it follows that $R$ satisfies (3) of Theorem 2.4.)

The examples of non-Noetherian rings $R$ with $\operatorname{Int}(R)$ Prüfer given in [16, 17] are glad domains, and the examples of such rings given in [10] are easily seen to be finite intersections of glad domains. The example [8, 6.4] is an example of an almost Dedekind domain with finite residue fields for which $\operatorname{Int}(R)_{S}=\operatorname{Int}\left(R_{S}\right)$ for each multiplicative subset of $R$ which is not a finite intersection of glad domains.

## 4. Generating ideals in $\operatorname{Int}(R)$

In this section we show that if $R$ is an almost Dedekind domain with finite residue fields such that $\operatorname{Int}\left(R_{P}\right)=\operatorname{Int}(R)_{(R-P)}$ for all maximal ideals $P$ of $R$, then each finitely generated ideal of $\operatorname{Int}(R)$ can be generated by two elements, and if $R$ is a finite intersection of glad overrings, then one of the generators may be chosen arbitrarily. This result extends results on the case that $R$ is Noetherian in [21, 7, 18] and includes ail known examples where $\operatorname{Int}(R)$ is Prüfer. Recall that since $\operatorname{Int}(R)$ has Krull dimension two in this case, a theorem of Heitmann [14, Theorem 3.1] insures that each finitely generated ideal of $\operatorname{Int}(R)$ is generated by three elements. We recall some results and definitions from [18].

Definition 4.1. An ideal $\mathscr{I}$ of $\operatorname{Int}(R)$ is said to be unitary if $\mathscr{I} \cap R \neq\{0\}$. Let $\mathscr{I}(a)=$ $\{f(a) \mid f \in \mathscr{I}\}$. The domain $\operatorname{Int}(R)$ is said to have the strong Hilbert property if for finitely generated unitary ideals $\mathscr{I}$ and $\mathscr{J}$ of $\operatorname{Int}(R), \mathscr{I}(a)=\mathscr{J}(a)$ for each $a \in R \Rightarrow$ $\mathscr{I}=\mathscr{J}$.

Lemma 4.2 (McQuillan [18, Lemma 2.6]). If $R$ is an integral domain such that $\operatorname{Int}(R)$ is a Prüfer domain then $\operatorname{Int}(R)$ has the strong Hilbert property.

Lemma 4.3 (McQuillan [18, Lemma 3.2]). Let $R$ be an integral domain and $\mathscr{I} a$ finitely generated unitary ideal of $\operatorname{Int}(R)$. Then there is a nonzero ideal $J$ of $R$ such that $a, b \in R$, and $a-b \in J \Rightarrow \mathscr{I}(a)=\mathscr{I}(b)$.

An ideal $J$ as in the above lemma is called a period for $\mathscr{I}$.

Theorem 4.4. Let $R$ be an almost Dedekind domain with finite residue fields such that $\operatorname{Int}\left(R_{P}\right)=\operatorname{Int}(R)_{(R-P)}$ for each maximal ideal $P$ of $R$. Then each finitely generated ideal $\mathscr{I}$ of $\operatorname{lnt}(R)$ can be generated by two elements. If $\mathscr{I}$ is unitary, then any nonzero element of $\mathscr{I} \cap R$ may be chosen as one of the two generators of $\mathscr{I}$.

Proof. Let $K$ be the quotient field of $R$. If $\mathscr{I}$ is not unitary, let $S=R-\{0\}$, and let $A$ be a finite generating set for $\mathscr{I}$. Then $\mathscr{I}\left(\operatorname{Int}(R)_{S}\right)=A\left(\operatorname{Int}\left(R_{S}\right)\right)=f K[X]$ for some $f \in \mathscr{I}$. Then $A=f A_{1}$ for some finite subset $A_{1}$ of $K[X]$. Let $r \in S$ be such that $r A_{1} \subseteq R[X]$. Then $\mathscr{I} \cong r \mathscr{I}=r f A_{1}(\operatorname{Int}(R)) \cong r A_{1}(\operatorname{Int}(R))$ and $r A_{1}(\operatorname{lnt}(R))=\mathscr{I}_{1}$ satisfies $\mathscr{I} \cap R \neq\{0\}$. Thus, it suffices to show the second statement.

Let $a \in \mathscr{I} \cap R-\{0\}$ and let $J=\operatorname{rad}(a R)$. By Theorem 2.3, $J$ is finitely generated. Then $J=\left(a^{2}, t\right)$ for some $t \in J$ by [14, Theorem 3.1]. It follows that $t R_{Q}=Q R_{Q}$ for each $Q \in V(a R)$.

By Lemma 2.2 we can define a relation $\sim$ on the set $V(a R)$ by $P \sim Q$ if there is a subset $T \subseteq R$ such that $T$ is a set of representatives for both $R / P$ and $R / Q$. By Theorem 2.3 there are only finitely many equivalence classes $\mathscr{T}_{1}, \ldots, \mathscr{T}_{m}$ of $\sim$. For each $i$ let $T_{i}$ be a finite subset of $R$ such that for each $Q \in \mathscr{T}, T_{i}$ is a set of representatives of $R / Q$.

Then it follows from Lemma 2.1 that each $\mathscr{\mathscr { T }}_{i}$ is open in the Zariski topology on $V(a R)$, and thus is also closed. Therefore, we can write $R / a R=(R / a R) e_{1} \oplus \cdots \oplus(R / a R) e_{m}$, for some idempotents $e_{i}$ of $R / a R$, where the image of $e_{i}$ in $(R / a R)_{P}$ is the identity if $P \in \mathscr{T}_{i}$, and the image of $e_{i}$ in $(R / a R)_{P}$ is zero if $P \notin \mathscr{F}_{i}$. Let $d_{i} \in R$ be a preimage of $e_{i}$ for each $i$.

Suppose we have shown that for each $i$ there exists $f_{i} \in \operatorname{Int}(R)$ such that $\mathscr{A}_{i}=$ $\left(a, f_{i}\right) \operatorname{Int}(R)$ satisfies $\mathscr{I}_{P}=\left(\mathscr{A}_{i}\right)_{P}$ for each $P \in \mathscr{T}_{i}$. Let $f=d_{1} f_{1}+\cdots+d_{m} f_{m}$, and $\mathscr{A}=(a, f) \operatorname{Int}(R)$. Then for $P \in V(a R)$ we have $P \in \mathscr{T}_{i}$ for a unique $i$; say $i=1$. Then $(\mathscr{A}(x)) R_{P}=(a, f(x)) R_{P}=\left(a, f_{1}(x)\right) R_{P}=(\mathscr{I}(x)) R_{P}$. Also, if $a \notin P$ then $\mathscr{I}(x) R_{P}=R_{P}=\mathscr{A}(x) R_{P}$. Thus by Lemma $4.2, \mathscr{A}=\mathscr{I}$. Therefore, it suffices to show that for each $i$ there exists $f_{i} \in \operatorname{Int}(R)$ such that $\mathscr{A}_{i}=\left(a, f_{i}\right) \operatorname{Int}(R)$ satisfies $\mathscr{I}_{P}=\left(\mathscr{A}_{i}\right)_{P}$ for each $P \in \mathscr{T}_{i}$.

Let us fix $j$ and assume that $T_{j}=\left\{a_{0}, a_{1}, a_{2}, \ldots, a_{q-1}\right\}$ is a set of representatives for $R / Q$ for each $Q \in \mathscr{T}_{j}$. We also have $t R_{Q}=Q R_{Q}$ for each $Q \in V(a R)$.

By Lemma 4.3 we may let $r R \subseteq a R$ be a period of $\mathscr{I}$, so that $\mathscr{I}(x)=\mathscr{I}(y)$ for $x$, $y \in R$ with $x-y \in r R$. Let $H=\operatorname{rad}(r R)$. Then $H$ is finitely generated by Theorem 2.3 and thus $H^{k} \subseteq r R$ for some $k \geq 1$. For each $n \in \mathbb{Z}_{+}$write $n$ in its $q$-adic expansion

$$
n=u_{0}+u_{1} q+u_{2} q^{2}+\cdots+u_{r} q^{r}, \quad 0 \leq u_{i}<q
$$

and define

$$
s_{n}=a_{u_{0}}+a_{u_{1}} t+a_{u_{2}} t^{2}+\cdots+a_{u_{r}} t^{r}
$$

Consider the ideals $\mathscr{I}\left(s_{i}\right)=B_{i}, i=0,1, \ldots, q^{k}-1$. Since $\mathscr{I}$ is finitely generated, the $B_{i}$ are finitely generated also. By [14, Theorem 3.1] there exist $b_{i} \in B_{i}$ such that $B_{i}=\left(a, b_{i}\right) R$. Let $N=q^{k}-1$ and define $F_{0}, F_{1}, \ldots, F_{N} \in K[X]$ by

$$
F_{j}=\left(X-s_{j+1}\right)\left(X-s_{j+2}\right) \cdots\left(X-s_{j+N}\right) .
$$

Let $s_{0}!=1$ and for $n \geq 1$ let $s_{n}!=\prod_{i=1}^{n} s_{i}$. Let

$$
G_{n}=\frac{F_{n}}{s_{N}!}
$$

Since $Q R_{Q}=t R_{Q}$ and $T_{j}$ is a set of representatives of $R / Q$ for each $Q \in \mathscr{T}_{j}$, then by [18, Corollary 4.4], for each $Q \in \mathscr{F}_{j}$ the polynomials $G_{n}(X)$ are contained in $\operatorname{Int}\left(R_{Q}\right)$ and have the property that

$$
G_{n}(x) \text { is a unit of } R_{Q} \text { if and only if } x \equiv s_{n}\left(\bmod Q^{N} R_{Q}\right)
$$

Let $e$ be an exponent of the group $\left(R / Q^{k}\right)^{*}$ for each $Q \in V(a R)$, which is possible by Corollary $2.5(\mathrm{a})$. Define $f(X) \in \operatorname{Int}(R)$ by

$$
f(X)=\sum_{m=0}^{N} b_{m} G_{m}(X)^{e k}
$$

Then the polynomial $f(X)$ has the property that for any $Q \in \mathscr{F}_{j}$, we have

$$
f(x) \equiv b_{n}\left(\bmod Q^{k} R_{Q}\right) \text { if } x \equiv s_{n}\left(\bmod Q^{N} R_{Q}\right)
$$

Indeed let $x \equiv s_{n}\left(\bmod Q^{N} R_{Q}\right)$. Then $G_{n}(x)$ is a unit of $R_{Q}$ for each $Q \in \mathscr{T}_{j}$. Therefore, the image $\overline{G_{n}(x)} \in R / Q^{k}$ is a unit for each $Q \in \mathscr{T}$. Thus, $G_{n}(x)^{e k}-1 \in Q^{k} R_{Q}$ for each $Q \in \mathscr{T}_{j}$. If $i \in\{0,1, \ldots, N\}-\{n\}$ then $G_{i}(x) \in Q R_{Q}$ for each $Q \in \mathscr{T}_{j}$. Thus, $G_{i}(x)^{e k} \in Q^{k} R_{Q}$ for each $Q \in \mathscr{T}_{j}$. Thus, $f$ has the desired property.

Let $\mathscr{A}=(a, f)(\operatorname{Int}(R))$. To show $\mathscr{I} R_{P}=\mathscr{A} R_{P}$ for $P \in \mathscr{T}_{j}$ it suffices to show that $\mathscr{I}(x) R_{P}=\mathscr{A}(x) R_{P}$ for each $x \in R$. To show that $\mathscr{I}(x) R_{P}=\mathscr{A}(x) R_{P}$ for each $x \in R$, it suffices to show $\mathscr{F}\left(s_{n}\right) R_{P}=\mathscr{A}\left(s_{n}\right) R_{P}$ for $n=1,2, \ldots, k$. Since $a \in P$ we have $t R_{P}=J R_{P}=P R_{P}$, and thus $\mathscr{I}\left(s_{n}\right) R_{P}=\left(a, b_{n}\right) R_{P}=\mathscr{A}\left(s_{n}\right) R_{P}$ by the choice of $f$.

Therefore, $\mathscr{I}(x)=\mathscr{A}(x)$ for each $x \in R$, and therefore $\mathscr{I}=\mathscr{A}$ by Lemma 4.2.

Corollary 4.5. Let $R$ be an almost Dedekind domain with finite residue fields such that $\operatorname{lnt}\left(R_{P}\right)=\operatorname{Int}(R)_{(R-P)}$ for each maximal ideal P of $R$. Then $\mathscr{I} \oplus \mathscr{J} \cong \mathscr{I} \mathscr{J} \oplus \operatorname{Int}(R)$ for each pair of finitely generated ideals $\mathscr{I}$ and $\mathscr{J}$ of $\operatorname{Int}(R)$.

Proof. The argument in [2, p. 144] shows that this follows from Theorem 4.4.

The following is another example of where glad domains behave similarly to Noetherian valuation rings. In the Noetherian case the following result was given in [7, Theorem 7.5]. We say an ideal $I$ of a ring $A$ is strongly 2 -generated if for each $a \in I-\{0\}$ there exists $b \in I$ such that $I=(a, b) A$.

Theorem 4.6. Let $R$ be an almost Dedekind domain with finite residue fields which is a finite intersection of glad domains. Then each finitely generated ideal $\mathscr{I}$ of $\operatorname{Int}(R)$ is strongly 2-generated.

Proof. As in the proof of Theorem 4.4 we may assume $\mathscr{I}$ is unitary. Let $J$ be the Jacobson radical of $R$. Let $a \in(\mathscr{I} \cap R) J-\{0\}$ and let $g \in \mathscr{I}-\{0\}$. By Theorem 4.4 we may choose $f \in \mathscr{I}$ such that $\mathscr{I}=(a, f) \operatorname{Int}(R)$. For each $b \in R$ the polynomial $h=f+a b$ has the same property as $f$. That is $(a, f)(\operatorname{Int}(R))=(a, f+a b)(\operatorname{Int}(R))=$ $(a, h)(\operatorname{lnt}(R))$. Since $R$ is not a field, $R$ is infinite, and thus we may choose $b$ so that $(g, h) K[X]=K[X]$.

To show that $\mathscr{I}=(g, h) \operatorname{Int}(R)$ let $p g+q h=1, p, q \in K[X]$. Then for some $c \in R$ we have $c p, c q \in R[X]$, and then $(c p) g+(c q) h=c \in \mathscr{I}$. We have $\mathscr{I}=$ $(a, h)(\operatorname{lnt}(R))=(c, a, h)(\operatorname{lnt}(R)) \subseteq(g, a, h)(\operatorname{lnt}(R)) \subseteq \mathscr{I}$. Thus, $\mathscr{I}=(g, a, h)(\operatorname{lnt}(R))$. To show that $\mathscr{I}=(g, h)(\operatorname{Int}(R))$ it suffices by Lemma 4.2 to show $\mathscr{I}(x)=(g(x), h(x)) R$ for each $x \in R$. But $\mathscr{F}(x)=(g(x), h(x), a) R$ and $a \in \mathscr{F}(x) J$. Thus, $\mathscr{I}(x)=(g(x), h(x)) R$ by Nakayama's lemma.

## References

[1] J.T. Arnold and R. Gilmer, Idempotent ideals in unions of nets of Prüfer domains, J. Sci. Hiroshima Univ. Ser. A-1 31 (1967) 131-145.
[2] J. Brewer and L. Klingler, The ring of integer-valued polynomials of a semi-local principal ideal domain, Linear Alg. Appl. 157 (1991) 141-145.
[3] N. Bourbaki, Commutative Algebra (Addison-Wesley, Reading, MA, 1972).
[4] D. Brizolis, A theorem on ideals in Prüfer rings of integral-valued polynomials, Commun. Algebra 7 (1979) 1065-1077.
[5] P.J. Cahen and J.L. Chabert, Coefficients et valeurs d'un polynome, Bull. Sci. Math. 95 (1971) 295-304.
[6] J.L. Chabert, Anneaux de "polynômes à valeurs entières" and anneaux de Fatou, Bull. Sci. Math. 99 (1971) 273-283.
[7] J.L. Chabert, Un anneaux de Prüfer, J. Algebra 107 (1987) 1-16.
[8] J.L. Chabert, Integer-valued polynomials, Prüfer domains, and localization, Proc. Amer. Math. Soc. 118 (1993) 1061-1073.
[9] R. Gilmer, Multiplicative Ideal Theory (Dekker, New York, 1972).
[10] R. Gilmer, Prüfer domains of integer-valued polynomials, J. Algebra 129 (1990) 502-517.
[11] R. Gilmer, W. Heinzer, D. Lantz and W. Smith, The ring of integer-valued polynomials of a Dedekind domain, Proc. Amer. Math. Soc. 108 (1990) 673-681.
[12] R. Gilmer, W. Heinzer and D. Lantz, The Noetherian property in rings of integer-valued polynomials, Trans. Amcr. Math. Soc. 338 (1993) 187-199.
[13] W. Heinzer and J. Ohm, Locally Noetherian commutative rings, Trans. Amer. Math. Soc. 158 (1971) 273-284.
[14] R. Heitmann, Generating ideals in Prüfer domains, Pacific. J. Math. 62 (1976) 117-126.
[15] I. Kaplansky, Commutative Rings (The University of Chicago Press, Chicago, 1974).
[16] A.K. Loper, Another Prüfer ring of integer-valued polynomials, preprint.
[17] A.K. Loper, More almost Dedekind domains and Prüfer domains of polynomials, preprint.
[18] D.L. McQuillan, On Prüfer domains of polynomials, J. Reine Angew. Math. 358 (1985) 162-178.
[19] A. Ostrowski, Über ganzwertige polynome in algebraischen Zalkörpern, J. Reine Angew. Math. 149 (1919) 117-124.
[20] G. Polya, Über ganzwertige polynome in algebraischen Zalkörpern, J. Reine Angew. Math. 149 (1919) 97-116.
[21] D.E. Rush, Generating ideals in rings of integer-valued polynomials, J. Algebra 92 (1985) 389-394.
[22] F. Shibata, T. Sugatani and K. Yoshida, Note on rings of integer-valued polynomials, C.R. Math. Rep. Acad. Sci. Canada 8 (1986) 297-301.

