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Abstract 

Let R be an integral domain with quotient field K and let Znt(R) = {f E K[X] If(R) 2 R}. In 
this note we determine when Znt(R) = R[X] for an arbitrary integral domain R. More generally 
we determine when Znt(R) C Rs[X] for a multiplicative subset S of R. In the case that R is an 
almost Dedekind domain with finite residue fields we also determine when Znt(Rs) = Znt(R)s 

for each multiplicative subset S of R, and show that if this holds then finitely generated ideals 
of Znt(R) can be generated by two elements. @ 1998 Elsevier Science B.V. 

AMS classijcation: 13F20; 13F05; 13B24 

0. Introduction 

Let R be an integral domain with quotient field K and let M(R) be the ring of 

integer-valued polynomials on R. Thus, M(R) = {f E K[X] 1 f(R) C R}. The ring 

h(R) has been much studied since it was considered in the 1919 articles of Ostrowski 

[ 191 and Polya [20] for the case that R is the ring of integers in an algebraic number 

field. Among the first questions which arise in studying Id(R) is to determine when 

ht(R) = R[X]. This question was considered [5], and was answered for R Noetherian 

in [22]. This result for the Noetherian case was later used for example in [ 1 l] and in 

[12]. In this note we determine when M(R) = R[X] for an arbitrary integral domain 

R. More generally, we determine when Id(R) C Rs[X] for a multiplicative subset S of 

R. We also determine when Znt(Rs) = Znt(R)s for each multiplicative subset S of R 

in the case that R is an almost Dedekind domain with finite residue fields. It turns out 

that these properties put rather strong finiteness conditions on R, and focus attention on 

a special class of almost Dedekind domains which was defined in [ 171. We also show 

that if R is an almost Dedekind domain with finite residue fields and Znt(Rs) = Znt(R)s 
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for each multiplicative subset S of R, then finitely generated ideals of Znt(R) can be 

generated by two elements, as in the case that R is Dedekind with finite residue fields. 

A question of Brizolis [4, p. 10751 that has been considered by several authors is 

to determine when Int(R) is a Priifer domain. In the case of a Noetherian ring R it is 

known that Int(Rs) = Int(R)s for each multiplicative subset S of R [5], and thus for 

R Noetherian this question reduces to the case that R is local. Using this and results 

in [6] on the case that R is a Noetherian valuation ring, it was shown by Chabert [7, 

Corollaire 6.51 and McQuillan [18] that if R is Noetherian, Znt(R) is Prtifer if and only 

if R is a Dedekind domain with finite residue fields. In [7] Chabert also observed that if 

R is a domain such that Int(R) is Prtifer, then R is almost Dedekind with finite residue 

fields. Recall that a domain R is an almost Dedekind domain if RP is a Noetherian 

valuation ring for each maximal ideal P of R [9, Section 361. 

In exploring the above question of Brizolis, various authors have constructed ex- 

amples of almost Dedekind domains R with finite residue fields for which Int(R) is 

Prtifer, and examples of such almost Dedekind domains for which Int(R) is not Priifer. 

For example, see [8, 10, 16, 171. In the examples in [lo] where Znt(R) is not Prtifer, 

the technique used for showing this is to show that Znt(R) c Rp[X] for some maximal 

ideal P of R. Indeed condition (1) Znt(R) $ Rp[X] for each maximal ideal P of R, 

is easily seen to be necessary for Int(R) to be Prtifer. This brings up the question of 

characterizing condition (1). This is done in section one of this note. On the other 

hand, condition (2) Int(Rp) = Znt(R)R_p for each maximal ideal P of R, on an almost 

Dedekind domain R with finite residue fields is obviously sufficient for Znt(R) to be 

Priifer. This condition is characterized in Section 2. An example in [8] shows that (1) 

+ (2) for a general almost Dedekind domain with finite residue fields. In Section 3 

we relate the almost Dedekind domains which satisfy (2) to the so-called glad domains 

defined in [ 171, and give some results on these classes of almost Dedekind domains. 

In Section 4 we show that the property that finitely generated ideals of Znt(R) are 

generated by two elements, and some related properties, extend from the case that 

R is a Dedekind domain with finite residue fields, to the more general case that R 

satisfies (2). 

1. When Zw(R) c R&Y] 

In this section we determine when Znt(R) C Rs[X] for an integral domain R and 

a multiplicative subset S of R. By a ualuation ring, we mean a ring, possibly with 

zero-divisors, in which the set of ideals is totally ordered under inclusion. If R is a 

ring define d,(X) = d,(&,X~, . . . ,X,) E R[&,X,, . . . ,&I by 

da(X) = n (Xj -Xi). 
O<i<j<n 

We can consider d,, as a function R”+’ + R in the usual way. If x E R is nilpotent we 

define the nilpotence degree of x as the greatest integer n such that x” # 0, and denote 
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it nd(x). If s E R and I is an ideal of R let D(s) denote {P E Spec(R) 1 s $i P} and 

V(1) = {P E Spec(R) [I GP}. We denote the non-negative integers by H+, and the 

cardinality of a set A by IA 1. If f E B[X] for some ring B containing R as a subring, 

we denote the R-submodule of B generated by the coefficients of f by cR(f ), or by 

c(f) if the reference to R is clear. The following lemma shows the relevance of the 

polynomials d,(X). 

Lemma 1.1. Let R be an integral domain with quotient field K. If f = g/a E Z&(R), 

g E R[X], a E R, then d,(R”+‘)C(aR :R c(g)). 

Proof. Write g = a,X” + a,_lX”-’ + . . . + a0 E R[X], ai E R. Let x0,x1,. . . ,x, E R 

and let 

Since the entries of C are in aR by hypothesis, then multiplying both sides of the 

equation AB = C by the adjoint of A we see that dai E aR for each i, with d = 

d,(xo, . . ., xn) = noLi<jln(~; -Xi). Thus, we have d,(R”+‘) c(aR :R c(g)). 0 

If I is an ideal of R and A = R/I, then it is clear that d,(R"+' ) C I if and only if 

d,,(A”+‘) = (0). In the next few lemmas we give some consequences of d,,(R”+‘) = 
(0). Recall that a ring R is arithmetical if Rp is a valuation ring for each maximal 

ideal P of R. 

Lemma 1.2. Let R be a ring. If d,,(R”+‘) = 0 f OY a positive integer n then the 

following hold: 
(a) The set {]R/PI I P E Spec(R)} is bounded. 
(b) The set {nd(x) (n E nil(R)) is bounded 

If R is arithmetical (b) can be strengthened to 
(c) Jk = 0 for some k where J is the Jacobson radical of R. 

Proof. For the proof of (a) we claim that n 2 IR/P( for each P E Spec(R). Indeed 

if some x0,x1,. . . ,x, E R have distinct images in R/P for some P E Spec(R), then we 

have no<i<j<n(xj - Xi) = d,,(xo,. . .,x,) $ P, a contradiction. 

For the proof of (b) let x E nil(R). Since d,(l,x,x’,. ..,A?) = 0, then writing each 

factor (xj - xi) of d,( 1,x,x2 , . . . ,x” ) as x’(xj-’ - 1) and observing that (xj-’ - 1) is a 

unit in R, we see that for some t > 0, xf = 0 for all x E nil(R). 

To show that (b) + (c) if R is arithmetical let t be such that x1 = 0 for all x E 

rad(R). It suffices to show that ~1x2 . . .xt = 0 for xi, x2, . , xt E rad(R). For this it 

suffices to show ~1x2.. .xy = 0 in Rp for each prime ideal P of R. But the result is 

clear in this case since Rp is a valuation ring, and hence (x1,x2,. . . ,xl)Rp is principal. 
0 
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Corollary 1.3. If R is a ring with Jacobson radical J, the conditions (a) and (c) of 

Lemma 1.2 imply: 

(d) The group of units R* of R has finite exponent. 

Proof. It follows from condition (a) that (R/J)* has finite exponent. Suppose we have 

shown that (R/J’-‘)* has finite exponent. We have the exact sequence 

0 --t 1 + (J’-l/J’) --) (R/J’)* + (R/J’-‘)* . 

Also, the multiplicative group 1 + J’-l/J’ is isomorphic to the additive group J’-l/J’, 

since (1 +x)( 1 + y) = 1 +x + y for x, y E J’-l/J’. It follows from conditions (a) and 

(c) that kJ_’ G kR = 0 for some positive integer k, and thus 1 + J’-l/J’ has finite 

exponent. Therefore (R/J’)* does also. 0 

Before giving our main result on when Znt(R) & Rs[X] for a multiplicative subset S 

of R, we remind the reader that a difficulty with Znt(R) in general is that Znt(Rs) = 
Znt(R)s can fail for a multiplicative subset S of R. On the positive side there is the 

following result of P.-J. Cahen and J.-L. Chabert. 

Proposition 1.4 (Cahen and Chabert [5, p. 303, Corollaries 4, 51). 1fS is a multipli- 
cative subset of R then 

(1) Znt(R)s C Znt(R,). 
(2) Zf R is Noetherian, then Znt(R)s = Znt(Rs). 

Proof. We give an alternate proof for (1) that is shorter than the one in [5]. For this 

it suffices to show that Znt(R) C Znt(Rs). Let f E Znt(R) have degree n and assume 

Znt(Rs) contains the members of Znt(R) of degree < n. Let r/s E Rs, r E R, s E S and 

consider s”f(X) = (s”f(X)-f(sX))+f(.sX). Since s”f(X)-f(sX) = g&X) E Znt(R) 
and has degree < n, g&Y) E Znt(Rs). Then .?(f(j)) = gS(5) + f(s(i)) E Rs, and 

hence f(f) E Rs. 
A short and simple proof of (2) is given in [22, Proposition 41. 0 

Theorem 1.5. Let R be an integral domain with quotient field K and let S be a 
multiplicative subset of R. The following are equivalent: 

(1) Znt(R) $ Rs WI. 
(2) There exists a positive integer n, and elements a, b E R such that (aR :R b)Rs # 

Rs and d,,(R”+‘) C(aR :R b). 
(3) There exist a, b E R with (aR :R b)Rs # Rs such that the two sets { IR/PI (P E 

V(aR :R b)} and {nd(x) )x E nil(R/(aR :R b))} are jinite. 

Proof. (1) =+ (2) Let f be an element of Znt(R) - R&C] of minimal degree. Write 

f = g/a, with g = a,$” + an_+Xn-’ + . . . + a,-, E R[X], a, ai E R. Then a,, @’ aRs. 
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Indeed if a,, = rajs for some r E R, s E S, we would have sf = sgja E Int(R)-Rs[X], 
and hence (sa,_lXn-l + sa,_~Xn-2 + . . . + sao)/a E Int(R) - Rs[X]. By Lemma 1.1 

we have d,,(R”+‘) C_(aR :R a,). 
(2) + (3) This follows from Lemma 1.2. 

(3) + (1) Let {qi,..., q,,} = { lR/Pl 1 (aR :R b) C_ P}. The manic polynomial f(X) = 

nr=,(Xqz -X) satisfies f(R) C_ rad(aR :R b), and g(X) = f (X)j satisfies g(R) s(aR :R 
b) for some j. Then we have bg(X)/a E bit(R), and since the leading coefficient of 

bg(X), which is b, is not contained in aRs, bg(X)/a $! Rs[X]. 0 

Corollary 1.6. If R is a Prufer domain and S a multiplicative subset of R, the con- 

ditions in Theorem 1.5 are equivalent to: 
(4) There exists a,b E R with (aR :R b)Rs # Rs such that the set { lR/Pl 1 P E 

V(aR :R b)} is finite and (aR :R b) contains a power of its radical. 

Proof. This follows from Lemma 1.2. 0 

Corollary 1.7. Let R be an integral domain with quotient field K. The following are 
equivalent: 

(1) mt(R) # RF0 
(2) There exists a positive integer n, and elements a, b E R such that b $! aR and 

d,,(R”+‘) G(aR :R b). 
(3) There exist a, b E R with b $! aR such that the two sets {jR/PI 1 P E V(aR :R b)} 

and {nd(x) Ix E niZ(R/(aR :R b)} are bounded. 

Proof. Take S = { 1) in the above theorem. 0 

Corollary 1.8 (Shibata et al. [22, Theorem 21). ZfR is a Noetherian domain, Int(R) # 
R[X] if and only if for some prime P of the form P = (aR :R b), the field RJP is 
finite. 

Proof. If Int(R) # R[X] then Int(R) $Z Rp[X] for some maximal ideal P of R. Then 

by Theorem 1.5 there exist a, b E R with (aR :R b)Rp # Rr such that the two sets 

{IR/Ql I Q E V(aR :R b)} and {nd(x) (x E nil(R/(aR :R b))} are finite. In particular, 

R/P is finite. Also P is a minimal prime of (aR :R b). That is P is a weak Bourbaki 

prime of aR. Since R is Noetherian, P is an associated prime of aR; that is P = (aR :R 

c) for some c E R. The converse is clear. q 

Examples of almost Dedekind domains R having finite residue fields for which the 

rings Int(R) are not Priifer are constructed in [lo, 81. Since the results in this section 

cast some light on these examples we review briefly the method used for constructing 

them. This construction allows us to show that the condition that Znt(R) $ RM[X] for 

each maximal ideal M of R, is not equivalent to the condition, considered in the next 

section, that Int(R)s = Int(Rs) for each multiplicative subset S of R. For the details 
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of this construction see [lo], where it is given in much greater generality than needed 

here. If A C B are Dedekind domains and PB = Ql’ QG’ . . . Qz for a prime ideal P 

of A and primes Qt,...,Q of B, we write e(Qi, P) for the ramification index ei, and 

[B/Qi :A/P] for the residue degree. 

Let PO,. . . , P, be prime ideals of the ring of integers A0 of a number field Ko, let 

&SK, c..* be a sequence of finite extension fields and let K = U Ki. Let Da = (Ao)s, 

where S = A0 - (PI U . . UP,,), and let Di and D be the integral closures of DO in Ki 

and K, respectively. For each j E { 1, 2,. . . , n} consider a sequence of prime ideals Qj 

of Di lying over Pj such that Qi+t n Di = Qi. Then by [l, Corollary 3.61, D is almost 

Dedekind if and only if 

(a’) for each such sequence of prime ideals the set of ramification indices {e(Qi, Pj) 1 

i E Z+} is bounded. 

For D to have finite residue fields it is necessary and sufficient that 

(b’) for each such sequence of prime ideals the set of residue degrees {[DJQi : 

Do/Pj] / i E Z+} is bounded. 

To produce an example of an almost Dedekind domain R with finite residue fields 

for which Znt(R) is not Priifer, Gilmer shows [lo, Example 141 that condition (b) 

of the following theorem is strictly stronger than condition (b’). He also shows [lo, 

Theorem 131 that (b) is a necessary condition for Znt(R) $ RM[X] for some maximal 

ideal A4 of R. (The condition Znt(R) g RM[X] is clearly necessary for Znt(R) to be 

Priifer since every overring of a Prtifer domain is Priifer.) To furnish more examples 

where Znt(R) $ Rw[X] and thus to answer some questions in [lo], Chabert shows 

[8, Example 6.21 that condition (a) of the following theorem is strictly stronger than 

condition (a’), and [8, Lemma 1.61 that (a) is a necessary condition for /m(R) $ 

RM[X] for some maximal ideal A4 of R. In the proof of the following theorem we use 

Theorem 1.5 to prove that (a) and (b) are necessary for Znt(R) $ RM[X]. As observed 

in [lo] and [8] this does not require that DO be Dedekind. We also give the converse 

in the important case that DO is Dedekind. This part of Theorem 1.9, together with 

[8, Example 6.51 shows that condition (1) of Theorem 1.9 is strictly weaker than the 

condition that Znt(R)s = Znt(Rs) for each multiplicative subset S of R, for R an almost 

Dedekind domain with finite residue fields. 

Theorem 1.9. Let DO be an almost Dedekind domain with quotient field Ko. Let 

KoCK1 C... be a sequence of finite extension fields with K = U Ki. Let Dt and 
D be the integral closures of DO in Ki and K, respectively. Consider the following 

statements: 
(1) Znt(D) $ DM[X] for each maximal ideal M of D. 
(2) (a) For each maximal ideal PO of DO, {e(M, PO) ) M E Spec(D) with M fl DO = 

PO} is bounded; and 
(b) for each maximal ideal PO of DO, {ID/MI 1 M E Spec(D) with M fl DO = PO} is 

bounded 
Then (1) + (2). In particular, ifZnt(D) is Prifer then (a) and (b) hold Zf DO is 

Dedekind, then (2) =+ (1). 
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Proof. (1) + (2)(b) Assume that (b) fails for the maximal PO of DO. Since D1 

has only finitely many maximal ideals lying over PO, for one of these, say PI, the 

set {ID/M/ 1 M E Spec(D) with M f? Dl=Pl} is unbounded. Similarly, since Dz has 

only finitely many maximal ideals lying over PI, for one of these, say Pz, the set 

{ID/M/ ( A4 E Spec(D) with A4 n D2 = P2) is unbounded. We similarly get a prime Pi 

of Di for each i. Let A4 = Uz, P;, a maximal ideal of D. 

Since D is Priifer, the ideals (aD :D b) are finitely generated. Thus, to show 

M(D) C DM[X] it suffices by Theorem 1.5 to show that for each finitely generated 

ideal Z C M, the set {ID/PI I P is a maximal ideal of D containing I} is unbounded. 

But if I = (al, . . ,a,)D, then {al,. . . ,a,) C DirtA = Pi for some i. Thus, {ID/P/ (P is 

a maximal ideal of D containing I} > {ID/P\ 1 P IS a maximal ideal of D lying over 

Pi} is unbounded. 

(1) + (2)(a) Assume that (a) fails for the maximal PO of DO. Since D1 has 

only finitely many maximal ideals lying over P 0, for one of these, say PI, the set 

{e(M, PI ) 1 M is a maximal ideal of D lying over PI} unbounded. Similarly, since 02 

has only finitely many maximal ideals lying over PI, for one of these, say P2, the set 

{e(M, P2) ) A4 is a maximal ideal of D lying over P2) unbounded. Let M = IJE, Pi, a 

maximal ideal of D. 

To show Znt(D) C DM[X] it suffices by Theorem 1.5 to show that for each finitely 

generated ideal Z CM, {nd(x) ( x E nil(D/Z)} is unbounded. But if I = (al,. . . , a,)D, 

then {al,..., a,}GDinM=Pif or some i. Let ti E rad((ul, . . . , u,)Di) generate Pi(Di)p,. 

Then in D/Z we have 0 # G = S (c)@~,~o) where S is a unit of DM/ZDM. So the 

nilpotency degree of D/Z is not bounded. 

(2) + (1) Assume that DO is Dedekind, that (a) and (b) hold, and let M be a max- 

imal ideal of D. To show that Z&(D) $ DM[X] it suffices by Theorem 1.5 to find ele- 

ments a, b E D with (uD :D ~)DM # 0~ such that the two sets of integers {[D/P\ 1 P E 

V(uD :D b)} and {nd(x) Ix E nil(D/(aD :D b))} are bounded. Let PO = DO n M and 

let a E PO be such that u(Do)po = Po(Do)po. Since PO is finitely generated, there exists 

s E DO - PO such that .sPo G aDo. Then PO C_ (uD 0 :D,, s), and since PO is maximal we 

have PO = (aDo :D~ s). Since DO is Priifer, D is a flat Do-module and hence POD = 

(aDo :oo s)D = (uD :D s). Thus by hypothesis (b), the set {ID/P/ 1 P E Y(aD :D s)} is 

bounded. To show that the set {nd(x) Ix E nil(D/(uD :D s))} is bounded, by hypothesis 

(a) we may choose k E Z+ such that e(P,Po) < k for every P E V(PoD). Let x E D 

be such that its image X is in nil(D/(uD :D s)). Since (uD :D s) = POD, we get x E P 

for each P E V(PoD). But x E Di for some i, and then x E Pi for each Pi E V(PoDi). 

Let PoDi = Ql’ n ... n Qz, where the Qi are the primes of Di lying over PO. Then 

x E Qi for each i and hence xk E QT’ n . . ’ n Q: = PoDi C POD = (uD :D s). q 

2. A characterization of when Znt(Rp) = Znt(R)~_p 

In this section we characterize those almost Dedekind domains R such that Znt(Rp) = 

Znt(R),t_p for each maximal ideal P of R. 
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Lemma 2.1. Let R be an integral domain and let P E Spec(R) be such that RJP is 

fmite and Int(Rp) = Int(R)(R_p). If t E R is such that tRp = PRp and {ao,. . . ,a*_~} 

is a set of representatives of R/P, then there exists s E R - P such that for each 

Q E D(s) fl V(tR), we have tRQ = QRQ and {ao,. . . , aq_-l } is a set of representatives 

of R/Q. 

Proof. Let g = (X - ao)(X - al)-. . (X - aq_l ) and f = g/t. Then f E Int(Rp) 
which is Int(R)(R_p, by hypothesis. Let st E R - P be such that st f E Int(R), let 

s2 =dq_-l(ao,..., aq_l) and let s = ~1.~2. 

Let Q E D(s)flV(tR). Since s2 $! Q, ao,. . . , a,_1 represent distinct cosets in R/Q, and 

since sg(n) E tR & Q for each x E R, {ao,. . . , aq-l } is a complete set of representatives 

of R/Q. Let x E Q. Then sg(x + ao)/t = sf (x + ao) E R + sg(x + ao) E tR C Q. But 

sg(x + ao) = sx(x + a0 - al ) * . . (x + ao-a,_l), and since ss = s(x+ao-al)...(x+ 

a0 - aq-1 ) # Q, x = (xsj)/s3 E tRp. Therefore, tRp = QRQ. Cl 

Lemma 2.2. Let P and Q be prime ideals of a ring R and let f : R + R/P and 
g : R + R/Q be the canonical maps. The following statements are equivalent. 

(a) Each set T CR of representatives for R/P is also a set of representatives for 

R/Q. 
(b) There exists a set T C R which is a set of representatives for both R/P and 

RIQ. 
(c) There is a bijection cp : RIP -+ R/Q such that cp of = g. 

Proof. The implication (a) + (b) is clear. For (b) + (c) if T is a set of representatives 

for both R/P and R/Q, it is clear that cp can be defined as g1 o fi_’ where fi, g1 are the 

restrictions off, g to T. For (c) + (a) let cp : R/P --f R/Q be such that (PO f = g. Let 

T be a set of representatives of R/P. Then R/Q = { cp( f (a)) ( a E T} = {g(a) 1 a E T}, 
and g(a) # g(b) for a # b E T. q 

Theorem 2.3. Let R be an almost Dedekind domain with finite residue fields and let 
M be a maximal ideal of R. Then Int(Rw) = Znt(R)(R_-M) tf and only tf the following 
hold for each nonzero a E M: 

(a) The radical of aR is finitely generated, and 
(b) there is a partition (5,. . . , &} of V(aR) into subsets which are open in 

V(aR) such that for each i E { 1, . _ ., m} there exists a set T, CR which is a set of 

representatives of R/Q for each Q E 5. 

Proof. (+) Let J = rad(aR). Since R is almost Dedekind, by Lemma 2.1 we get that 

for each Q E V(aR) there exists t(Q) E J, a set T(Q) c R and s(Q) E R - Q such 

that for each P E D(s(Q)) rl V(J) we have that t(Q)Rp = PRp and T(Q) is a set of ’ 

representatives of R/P. Since {D(s(Q)) 1 Q E V(J)} is an open cover of the compact 

set V(J) there exist ~1,. . ., Sk E R and corresponding elements tl, . . . , tk E J and finite 

subsets Tl , . . . , Tk of R such that if Q E V(J) then for some i we have Q E D(si), I;: 
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is a set of representatives of R/Q, and QRe = tiRQ. It follows that J = (a, tl, . . . , tk)R. 

This proves (a). 
To prove (b), observe that we can define a relation - on the set V(aR) by P N Q 

if there is a subset T CR such that T is a set of representatives for both R/P and R/Q. 

It is clear that - is reflexive and symmetric, and it follows from Lemma 2.2 that - 
is transitive. By the above paragraph there are only finitely many equivalence classes 
Y 1,. . . ,Fm of N. Then it follows from Lemma 2.1 that each $ is open in the Zariski 
topology on V(aR) (and thus also closed). 

(-+) It suffices to show that Znt(RM)C(Znt(R))(R_M) by Proposition 1.4. For this it 
suffices to show that there exists a basis {gn ] n 2 0) of Znt(RM) as an RM-module 
such that for each n there exists u, E R -M with u,,g,, E Znt(R). 

Let a E M be such that aRM = MRM. Then rad(aR) = J is finitely generated by 
hypothesis. Also by hypothesis there is a partition (5,. . . , Fm} of V(aR) into open 
subsets z such that for each i E { 1,. . . , m} we have a set Ti c R which is a set of 
representatives of RJQ for each Q E z. Assume M E 5. Let Yii = {Q E $ 1 aRQ = 

QRQ}, and let 6” = {Q E s 1 aRp # QRQ}. It follows from Lemma 2.1 that q’ 
is open in the Zariski topology on V(aR). We claim that q” is also open, To see 
this assume QRQ = Q”RQ for some prime Q E V(aR). There exists t E J such that 
tRQ = QRQ, and then a/l = ut”/v for some u, v E R - Q. Then by the case n = 1 
there exists s E R - Q such that tRH = HRH for each H E D(s) fl V(tR). Then 
tRH = HRH for each H E D(uvs) fl V(tR). But D(uvs) f? V(tR) = D(uvs) f? V(aR), and 
thus aRH = t”RH = H”RH for each H E D(uvs)rl V(aR). Since ,i” = lJ,,,, Y,, where 
yn = {Q E s /aRQ = Q”RQ}, q” is open. 

We now have the partition {Y/, Y,“, .%, . . ., Fm} of V(aR) into sets which are 
open in the Zariski topology on V(aR). We now change notation and denote 5’ by 
970, 6” by Yi and let 52, . . . , Fm retain their former meanings. Then for each positive 
integer k we can write 

WkR = (R/akR)ek o CT3 . . .cl3 (R/akR)ek ,,,, 

for some idempotents eki of RlakR, where the image of eki in (R/akR)Q is the identity 
if Q E 5, and the image of eki in (R/akR)Q is zero if Q E V(aR) - 5 [3, Proposition 
15, p. 1031. Let T = (a0 ,..., ag-l} 5 R be a set of representatives of R/Q for each 
Q E 90 U 9,. For each n E Z+ write n in its q-adic expansion 

n = uo + u1q + u*q2 + ‘. . + u,,qrn, 0 2 Uj <q. 

Define 

&I = au0 + a,,a + aya2 f.. . + aurnaral. 

Define fa, fi, . . . E K[X] by 

fox 1, fi=X(X-s~)(X-s2)...(~--sj-l). 
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Let 

kn = 2 [;] 
j=l 

Since {a~, . . . , aq_l} 

Q E 6, {gn I n > O> 
91. Fix n and let d, 

fn 
and g,,=-. 

akfl 

is a set of representatives of R/Q and aRQ = QRQ for each 

is an RQ-basis for Zat(R,) for each Q E Ye by [lo, Proposition 

E R be a preimage of egi for each i E {1,2,...,m}. Since 

do E 1 mod (aknRM) then do # M. Since do E aknRp for each Q E fl U Fz U . . . U Fm, 

then do fn has the property that do fn(R) C aLRQ for each Q E Yj U L& U. . . U Fm. Thus, 

dog,(R) C RQ for each Q E % U Fz U . . . U Fm. Also clearly dog,(R) c ~{RQ 1 Q $ 

V(aR)} and dog,(R) &~{RQ 1 Q E .Ys}. Thus dog,(R)Cn(R~ 1 Q E Spec(R)} = R. 
Therefore, dogn E hzt(R). q 

Theorem 2.4. Let R be an almost Dedekind domain with jinite residue fields. The 
following statements are equivalent: 

(1) Int(Rp) = Int(R)(R_p) for each maximal ideal P of R. 
(2) Int(Rs) = Int(R)s for each multiplicative subset S of R. 
(3) The following hold for each nonzero a E R: 

(a) The radical of aR is finitely generated; and 

(b) there is a partition {$, . . . , Fm} of V(aR) into subsets which are open in 
V(aR) such that for each i E { 1,. . ,m} there exists a set c 2 R which is a set of 

representatives of R/Q for each Q E z. 

Proof. That (2) implies (1) is clear, and the statements (1) and (3) are equivalent by 

Theorem 2.3. Thus, it suffices to show that (3) implies (2). Let S be a multiplicative 

subset of R. We may check the equality Znt(Rs) = Znt(R)s locally at primes of Rs. 
Thus let P E Spec(R) with P n S = 0. Since the properties (a) and (b) clearly pass 

from R to Rs, from Theorem 2.3 we get Znt(Rs)(R,-rRs) = Int((Rs)PRS) = Int(Rp) = 

Int(R)(R-p) = (Int(R)s)(Rs--P&). 0 

In the following corollary we collect a few immediate consequences of Theorems 

2.3 and 2.4. 

Corollary 2.5. Let R be an almost Dedekind domain and let I be a nonzero finitely 
generated ideal of R. lf R/P is finite and Znt(Rp) = bit(R)(R_p) for each P E V(I), 
then the following hold 

(a) There exists a finite set T 5 R which contains a set of representatiues of R/Q 
for each Q E V(I). In particular, the set {[R/PI I P E V(I)} is finite. 

(b) rad(I) is finitely generated. 
(c) The group of units (R/I)* of RJI has finite exponent. 
(e) If R has Noetherian spectrum, then R is Dedekind. 
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Proof. Part (a) follows easily from Theorem 2.3. For the proof of(b) let I = (ti, . . . , tn). 

Then Ji = rad(tiR) is finitely generated by Theorem 2.3, and rad(1) = J1 + . . . + J,, 

as can be seen by checking locally. Thus rad(Z) is finitely generated. The proof of 

part (c) follows from Corollary 1.3. For (e) recall that R has Noetherian spectrum 

if and only if each prime ideal of R is the radical of a finitely generated ideal [13, 

p. 2761. Thus since the radical of a finitely generated ideal of R is finitely generated, 

the hypothesis in part (e) implies that each prime ideal of R is finitely generated, and 

thus R is Noetherian. 0 

3. Glad domains 

In this section we give some results on the class of glad domains which were defined 

in [ 171 and give their relationship to the rings described in Theorem 2.3. By an ouerring 
of a domain D we mean a ring R with the same quotient field as D which contains D 

as a subring. Following [ 171 we say a domain D with quotient field K # D is a glad 
domain if the following hold: 

(1) D = &AK where {K]i E A} is a family of Noetherian valuation overrings 

of R. Let ai be the normed additive valuation associated with Vi, and let A4i be the 

maximal ideal of Vi. 

(2) There is a manic polynomial f E D[X] of degree > 1 such that for each i E A 

and each a E Vi, f(a) is a unit of Vi. 

(3) For each a E D the set {vi(a) ( i E A} is bounded. 

(4) There exists t E D such that tVi = Mi for each i E A. 

(5) There exists a finite subset T of D which is a set of representatives for Vi/Mi 

for each i E A. 

Before considering the relationship of glad domains to the rings R for which Znt(R)p 
= Znt(R)(R_p) for each maximal ideal P of R, we first give an alternate characterization 

of glad domains. (For simplicity of some of our later statements we are departing 

slightly from the definition in [ 171 by not requiring the family { Vi ( i E A} to be infinite. 

Thus, we include the case that D is Dedekind.) 

Proposition 3.1. Let D be an almost Dedekind domain with quotient field K # D. 
Then D is a glad domain if and only if the following statements hold 

(a) Each principal ideal of D contains a power of its radical. 

(b) The Jacobson radical J of D is a nonzero principal ideal. 
(c) There exists a jinite subset T of D which is a set of representatives for D/P 

for each maximal ideal P of D. 

Proof. If D is a glad domain then (b) and (c) hold by [17, Proposition 91. To prove 

statement (a), let a E D and let I = rad(aD). Let k = sup{vi(a) 1 i E A}, and let 

b,,... , bk E I. Now if i E A we have ui(blbZ.. . bk) 2 vi(a). Thus (blb2.. . b,+)/U E Vi 
for each i, and therefore bl b2 . . . bk E aD. Thus, Zk C aR. 
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Conversely, assume D is almost Dedekind domain satisfying (a)-(c). Then property 

(1) holds with { I$1 i E /i} = {Dp 1 P is a maximal ideal of R}. For (2), let T = 

{al,..., u4} be a set of representatives for each residue field of D, which exists by 

(c). Then f = 1 + nEi(X - ai) is clearly a unit valued polynomial for Dp for 

each maximal ideal P of D. For property (3) let a E D and let I = rad(uD). By 

property (a) we have I” c uR for some n 2 1. Thus if P is a maximal ideal of D we 

have P”Dp C I”Dp & uDp. Thus up(u) 5 n, where up denotes the normalized valuation 

for Dp. Thus (3) holds. Properties (4) and (5) above follow immediately from (b) 

and (c). 0 

Corollary 3.2. In u glad domain, the radical of a finitely generated ideal is finitely 
generated. 

Proof. Let I be a nonzero finitely generated ideal of the glad domain R and let tR 
be the Jacobson radical of R. Then rad(Z) = (I, t)R. Indeed it sufiices to check this 

locally at primes P containing I. But for such a prime P we have rad(l)Rp = PRp = 

(A t)Rp. 0 

The next result shows that the glad domains play a role in the class of almost 

Dedekind domains R with finite residue fields for which Znt(Rs) = Int(R)s, which is 

similar to the place occupied by the Noetherian valuation rings in the class of Dedekind 

domains. 

Proposition 3.3, Let R = n:, Ri with each Ri a glad overring of R. Then the fol- 

lowing hold: 
(1) Ri = Rs where S = R - U{Q fl R 1 Q u maximal ideal of R,}. 
(2) R is an almost Dedekind domain with jinite residue fields. 

(3) R is Bezout. 

Proof. For (1) we can adapt the proof from [ 15, Theorem 1071. Let Ri = n{ Vij 1 j E Ai} 

for i = 1 , . . . , m, where Kj is a Noetherian valuation ring with maximal ideal A4ij. By 

the definition of glad domain, for each fixed i, all of the residue fields vi,/‘Mij are 

isomorphic. Let qi be the order of Ej/M;j, j E Ai. Let k = qlq2 . . .q,,,(ql - l)(qz - 

1). . . (qm - 1). Let x E RI. It follows that for each positive integer n which is relatively 

prime to k, and for each V, in which x is a unit, the element u = 1 +x + . . . + cd-’ 

is also a unit of Vij. Indeed 

(a) if x maps to 1 in Vij/Mij, this follows since n is not divisible by the characteristic 

of Vij/Mij, and 

(b)iftheimagex* ofxin Vij/Mij isnot l,u= l+x*+...+(x*)“-‘=[l-(x*)“]/ 

(1 - x*) is a unit since n is relatively prime to the order of the element x* in the 

group Of Units Of cj/Mij. 
NOW let Pij = Mij f’R. We must show that Ri = Rs,, where Si = R - U{Pg ( j E Ai}, 

and we may take i = 1. It is clear that Rs, C RI. Let x E RI, and choose k so that 
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u=l+x+. . . +F1 is as in the above paragraph. Let s = l/u. We have the following 

cases: 

(i) If x E iI4ij, then s E V, -Mij. 

(ii) If x E V, - Mij, then s E V, - Mij, 

(iii) If x $ &j, then Y = l/x E A4ij, and then s = y”-‘/( 1 + y + *. . + Y”-‘) E ii4ij. 

Thus s E R. Also since x E RI, s E Vlj - Mlj for each j. Thus, s E R - Py for each 

j. It remains to show that sx E R. That is we must show sx E V, for each i and j. 

Thus we need only consider case (iii) above. In this case we have 

SX = yne2/( 1 + y + ’ ’ + Y”-’ ) E Vij. 

This proves (1). The statement (2) follows easily from this. 

For (3) let I # (0) b e a finitely generated ideal of R. It follows that the Jacobson 

radical J of R is non-zero. Let t E J - (0) and y E I - (0). Then by [ 14, Theorem 

3.11 there exists an element x E I such that I = XR + ytR. But then I C XR + JI, and 

thus I = XR by Nakayama’s Lemma. 0 

Theorem 3.4. Let R be an almost Dedekind domain with finite residue jelds. Then 

Int(Rp) = Int(R)(,+_-Pj for each P E Spec(R) if and only iffor each non-zero a E R, 

there is a partition (Fl, . . . , Fm} of V(aR) into open sets such that the ring Ri = 

n{Re 1 c? E %I is a glad domain for i = l,...,m. 

Proof. (+) Let a E R and let I = rad(aR). It follows from Theorem 2.3 that we may 

let I = (yi,..., yk)R, and that there is a partition {Yi,. . .,Fm} of V(aR) into open 

sets such that for each i = 1, . . . , m we have: 

(a) a set Ti G R which is a set of representatives of R/Q for each Q E z, and 

(b) an element ti E (~1,. . . , yk} such that tiRQ = QRQ for each Q E 6. 

Let R, = n{Rp ] Q E Z} for i = 1,. . . , m. We claim that each Ri is a glad domain. To 

see this we observe that the family {Rp 1 P E 6) is a family of valuation overrings 

of Ri satisfying the five properties of the definition of glad domain. Indeed these are 

all immediate from the definition of the 5 except possibly (3). For this let b E Ri. 
Then b = c/d, c,d E R. Let H be the radical of CR in R, let n be such that H” C CR, 
and let P E 5. Then up(c) 5 n, and from db = c we get up(d) + up(b) = up(c) 5 n. 
Since up(d) 10, we get up(b) 5 n. 

(+) If for each nonzero a E R there is a partition as above, then by the proof of 

Theorem 2.3 it follows that Int(Rp) = Znt(R)(R--P) for each P E Spec(R). (Alternately, 

from Proposition 3.1 it follows that R satisfies (3) of Theorem 2.4.) 0 

The examples of non-Noetherian rings R with Znt(R) Priifer given in [16, 171 are 

glad domains, and the examples of such rings given in [lo] are easily seen to be 

finite intersections of glad domains. The example [8, 6.41 is an example of an al- 

most Dedekind domain with finite residue fields for which Int(R)s = Znt(Rs) for each 

multiplicative subset of R which is not a finite intersection of glad domains. 
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4. Generating ideals in In@) 

In this section we show that if R is an almost Dedekind domain with finite residue 

fields such that Int(Rp) = hzt(R)(~-~) for all maximal ideals P of R, then each finitely 

generated ideal of Int(R) can be generated by two elements, and if R is a finite inter- 

section of glad overrings, then one of the generators may be chosen arbitrarily. This 

result extends results on the case that R is Noetherian in [21, 7, 181 and includes all 

known examples where Znt(R) is Prtifer. Recall that since Znt(R) has Krull dimension 

two in this case, a theorem of Heitmann [ 14, Theorem 3.11 insures that each finitely 

generated ideal of Znt(R) is generated by three elements. We recall some results and 

definitions from [ 181. 

Definition 4.1. An ideal 9 of Int(R) is said to be unitary if YflR # (0). Let 9(a) = 

U-(a)lf E y]. Th e d omain Int(R) is said to have the strong Hilbert property if for 

finitely generated unitary ideals 9 and 9 of Znt(R), 9(a) = y(a) for each a E R + 

9 = f. 

Lemma 4.2 (McQuillan [18, Lemma 2.61). ZfR 1s an integral domain such that Int(R) 

is a Priifer domain then Int(R) has the strong Hilbert property. 

Lemma 4.3 (McQuillan [18, Lemma 3.21). Let R be an integral domain and 9 a 
finitely generated unitary ideal of Int(R). Then there is a nonzero ideal J of R such 
thuta,bER,anda-bEJ+X(a)=Y(b). 

An ideal J as in the above lemma is called a period for 9. 

Theorem 4.4. Let R be an almost Dedekind domain with finite residuejelds such that 
Int(Rp) = Int(R)(,+P) for each maximal ideal P of R. Then each finitely generated 
ideal 9 of Int(R) can be generated by two elements. If 9 is unitary, then any nonzero 
element of 4 n R may be chosen as one of the two generators of _%. 

Proof. Let K be the quotient field of R. If 9 is not unitary, let S = R - {0}, and 

let A be a finite generating set for 3. Then 4(Int(R)s) = A(lnt(Rs)) = fK[X] for 

some f E 9. Then A = fAl for some finite subset Al of K[X]. Let r E S be such 

that rAl CR[X]. Then 9 2 r9 = rfAl(Znt(R)) E rAl(Int(R)) and rAl(Znt(R)) = 91 
satisfies 4 rY R # (0). Thus, it suffices to show the second statement. 

Let a E 9 fl R - (0) and let J = rad(uR). By Theorem 2.3, J is finitely generated. 

Then J = (a’, t) for some t E J by [14, Theorem 3.11. It follows that tRQ = QRe for 

each Q E V(aR). 
By Lemma 2.2 we can define a relation - on the set V(aR) by P N Q if there is a 

subset T CR such that T is a set of representatives for both R/P and R/Q. By Theorem 

2.3 there are only finitely many equivalence classes s, . . ., &, of -. For each i let Ti 
be a finite subset of R such that for each Q E z, I;: is a set of representatives of R/Q. 
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Then it follows from Lemma 2.1 that each z is open in the Zariski topology on V(aR), 

and thus is also closed. Therefore, we can write R/aR = (R/aR)el @ . . . @ (R/aR)e,, 

for some idempotents ei of RjaR, where the image of ei in (R/aR)p is the identity if 

P E z, and the image of ei in (R/aR)p is zero if P 6 3. Let 4 E R be a preimage 

of ei for each i. 

Suppose we have shown that for each i there exists fi E Znt(R) such that &i = 

(a,fi)Znt(R) satisfies 9JJ = (di)p for each P E $. Let f = dtft + ... + &Jm, 

and & = (a,f)Znt(R). Then for P E V(aR) we have P E 5 for a unique i; say 

i = 1. Then (d(x))Rp = (a,f(x))Rp = (a,fi(x))Rp = (9(x))Rp. Also, if a $ P 

then Y(x)Rp = Rp = d(x)Rp. Thus by Lemma 4.2, d = 9. Therefore, it suffices 

to show that for each i there exists fi E Znt(R) such that di = (a,fi)Znt(R) satisfies 

9~ = (&<)p for each P E $. 

Let us fix j and assume that Tj = {ao, al, a2, . . . , aq-1) is a set of representatives for 

R/Q for each Q E 6. We also have tRQ = QRe for each Q E V(aR). 

By Lemma 4.3 we may let rR C aR be a period of 9, so that Y(x) = Y(y) for n, 

y E R with n - y E rR. Let H = rad(rR). Then H is finitely generated by Theorem 

2.3 and thus Hk C rR for some k > 1. For each n E Z, write n in its q-adic expansion 

and define 

s, = au0 + a,, t + auz t2 + . . . + au7 t’. 

Consider the ideals Y(si) = Bi, i = 0, 1,. . . , qk - 1. Since 9 is finitely generated, 

the Bi are finitely generated also. By [14, Theorem 3.11 there exist bi E Bi such that 

Bi=(a,bi)R.LetN=qk-landdefineFo,Ft,...,FNEK[X]by 

Z$ = (X - Sj+l )(X - Sj+2) ’ ’ ’ (X - Sj+N). 

Let so! = 1 and for n 2 1 lets,! =ny=,si. Let 

Since QRe = tRQ and Tj is a set of representatives of R/Q for each Q E 5, then by 

[18, Corollary 4.41, for each Q E q the polynomials G,(X) are contained in ht(RQ) 

and have the property that 

G,(x) is a unit of RQ if and only if x E s, (mod @RQ). 

Let e be an exponent of the group (R/Qk)* f or each Q E V(aR), which is possible 

by Corollary 2.5(a). Define f(X) E Znt(R) by 

f(X) = 5 ~I,G,,,(X)'~. 
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Then the polynomial f(X) has the property that for any Q E 3, we have 

f(x) = b, (mod Qk&) if x = s,, (mod @&). 

Indeed let x c s, (mod QN&). Then G,(x) is a unit of RQ for each Q E q. Therefore, 

the image G,,(x) E R/Qk is a unit for each Q E q. Thus, G,(x>‘~ - 1 E QkR~ for 

each Q E q. If i E (0, 1, . . . , N} - {n} then Gi(x) E QRe for each Q f Yj. Thus, 

Gi(X)ek E QkR~ for each Q E 6. Thus, f has the desired property. 

Let d = (a,f)(Znt(R)). To show YRp = dRp for P E 5 it suffices to show that 

4(x)Rp = &‘(x)Rp for each x E R. To show that 9(x)Rp = &(x)Rp for each x E R, 

it suffices to show X(s,)Rp = &‘(sn)Rp for n = 1,2,. . , k. Since a E P we have 

tRp = JRp = PRp, and thus Y(s,,)Rp = (a, b,)Rp = &(s,)Rp by the choice of f. 
Therefore, Y(x) = d(x) for each x E R, and therefore 9 = d by Lemma 4.2. 0 

Corollary 4.5. Let R be an almost Dedekind domain with jinite residue fields such 

that Int(Rp) = Int(R)(R_p) for each maximal ideal P of R. Then 3~32 g 32@Int(R) 

for each pair of finitely generated ideals 9 and f of Int(R). 

Proof. The argument in [2, p. 1441 shows that this follows from Theorem 4.4. Cl 

The following is another example of where glad domains behave similarly to 

Noetherian valuation rings. In the Noetherian case the following result was given in 

[7, Theorem 7.51. We say an ideal I of a ring A is strongly d-generated if for each 

a E I - (0) there exists b E I such that I = (a, b)A. 

Theorem 4.6. Let R be an almost Dedekind domain with finite residue fields which is 

a finite intersection of glad domains. Then each finitely generated ideal 9 of Znt(R) 

is strongly 2-generated. 

Proof. As in the proof of Theorem 4.4 we may assume .a is unitary. Let J be the 

Jacobson radical of R. Let a E (9 n R)J - (0) and let g E 3 - (0). By Theorem 4.4 

we may choose f E 9 such that 9 = (a, f )&t(R). For each b E R the polynomial 

h = f + ab has the same property as f. That is (a, f )(Int(R)) = (a, f + ab)(Int(R)) = 

(a, h)(Int(R)). Since R is not a field, R is infinite, and thus we may choose b so that 

(9, ~hwl = mu. 
To show that 9 = (g,h)Znt(R) let pg + qh = 1, p,q E K[X]. Then for some 

c E R we have cp,cq E R[X], and then (cp)g + (cq)h = c E X. We have 9 = 

(a, h)(Int(R)) = (c, a, h)(Znt(R)) C(g, a, h)(Znt(R)) 2 9. Thus, 9 = (g, a, h)@(R)). To 

show that 9 = (g,h)(Int(R)) it suffices by Lemma 4.2 to show X(x) = (g(x),h(x))R 

for each x E R. But 9(x) = (g(x),h(x),a)R and a E X(xy. Thus, 9(x) = (g(x), h(x))R 

by Nakayama’s lemma. I7 
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